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Linear Model

• Observe N data vectors: (yi , xi1, . . . , xip) ∈ Rp+1; i = 1 . . . ,N
• p < N , less predictors than samples

• Want to predict r.v. Y given x1, . . . , xp

• Simplest approach: Linear Model

LM

Yi = β0 +
p∑

j=1
βjxij + εi

where εi
i.i.d.∼ N (0, σ2) and β’s are unknown coefficients
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Linear Model (LM)

• In matrix notation:
Y = Xθ + ε

Design matrix: X = [1 x1 · · ·xp]
• Using least squares (or equivalently maximum likelihood)

θ̂ = (XTX)−1XT Y,

• Predicted Values:
Ŷ = Xθ̂ = HY,

Hat Matrix: H = X(XTX)−1XT
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LIDAR Data: p = 1
• Y: log-ratio of received light from two lasers
• X: distance travelled before light is reflected back to source

●●
●●●

●

●
●
●●●

●

●●

●

●●

●

●

●

●
●●

●
●

●●

●

●

●
●●

●●●

●
●
●
●
●
●

●

●●
●

●
●
●

●
●

●
●

●

●

●

●

●
●
●
●

●

●

●

●

●
●

●

●

●

●
●●
●●

●

●

●

●
●
●

●●

●

●●

●
●●

●●

●

●

●
●

●

●

●

●●

●
●

●
●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

400 450 500 550 600 650 700

−
0.

8
−

0.
6

−
0.

4
−

0.
2

0.
0

x: Range

y:
 L

og
 R

at
io

NP Intro FDA FGAM Numerical Results Extensions



Mathew McLean Functional Generalized Additive Models

LIDAR Data
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Need something more general

• Could try
Yi = f (xi1, . . . , xip) + εi

f is unknown surface estimated from data
• Very hard to estimate for even moderately large p

• Known as curse of dimensionality
• Need more and more data to avoid huge variance in estimates

• Need to restrict class of f ’s we consider

NP Intro FDA FGAM Numerical Results Extensions
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Additive Model (AM)

AM

Yi = θ0 +
p∑

j=1
fj(xji) + εi

fj ’s are unknown, smooth (f ′′ cont.) functions estimated from data

• Note: fj ’s only identified up to a constants
• Need constraint, E [fj(Xj)] = 0 for all j
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How to Represent fj ’s?

• Using linear combination of "basis functions", Bk(·),

f (x) ≡
K∑

k=1
θkBk(x) = θT Bx

• Bx could be polynomials, Fourier series, wavelets, splines, etc.
• Most common: splines - piecewise polynomials
• Need to specify knots and order of the polynomials
• Many varieties - B-splines are most popular
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Univariate B-splines of Diff. Order
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• Choose order at least 2 greater than highest deriv. of interest
• Can have poor fits at boundary
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Regression Splines

One predictor AM fit with B-splines:

Yi = θ0 + f (xi) + εi = θ0 +
K∑

k=1
θkBk(xi) + εi

Design matrix: B = [1 B1(x) · · ·BK (x)]
• Least squares estimates:

θ̂ = (BTB)−1BT Y,

• Predicted Values:
Ŷ = Bθ̂ = HY,

Hat Matrix: H = B(BTB)−1BT

• B↔ X K ↔ p

NP Intro FDA FGAM Numerical Results Extensions
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Regression Splines

One predictor AM fit with B-splines:

Y = Bθ + ε

Design matrix: B = [1 B1(x) · · ·BK (x)]
• Least squares estimates:

θ̂ = (BTB)−1BT Y,

• Predicted Values:
Ŷ = Bθ̂ = HY,

Hat Matrix: H = B(BTB)−1BT

• LM vs. regression splines: X↔ B p ↔ K
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LIDAR Data - Too Few Splines
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LIDAR Data - Better
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LIDAR Data - Under-smoothing
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LIDAR Data - Interpolating Data
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Penalized Regression Splines

Idea
Control smoothness by penalizing some measure of complexity of f

• Often used penalty is:
∫

[f ′′(t)]2 dt
• Our objective function is (quadratic program):

L(θ) = (Y− Bθ)T (Y− Bθ) + λθTPθ

where P is positive semi-definite matrix incorporating penalty
• λ controls amount of smoothing
• λ→ 0: R.Spline fit; λ→∞: polynomial fit
• Bias-Variance trade-off: Introducing bias to reduce variance
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Penalized Regression Splines

• Objective function to be minimized:

L(θ) = (Y− Bθ)T (Y− Bθ) + λθTPθ

• Solution is
θ̂ = (BTB + λP)−1BT Y

• Hat Matrix
H = B(BTB + λP)−1BT

tr (H) = effective degrees of freedom.
• Measures effective number of parameters in fit
• Value of λ not informative for quantifying amount of smoothing
• q + 1 < tr(H) < q + 1 + K where q is degree of spline

NP Intro FDA FGAM Numerical Results Extensions
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Penalized Regression Splines

• Objective function to be minimized:

L(θ) = (Y− Bθ)T (Y− Bθ) + λθTPθ

• Solution is
θ̂ = (BTB + λP)−1BT Y

• Note: Can handle “p > N”
• No model selection

• Possible to formulate as a mixed effects model

NP Intro FDA FGAM Numerical Results Extensions
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LIDAR Data
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•P-splines: Specific type of penalized spline smooth w\ B-splines
•No boundary effects
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LIDAR Data
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Generalized Linear Model (GLM)

• Y comes from any exponential family distribution,

Yi
i.i.d.∼ EF(µi , φ),

µi = E(Yi)
φ: Dispersion parameter (φ = σ2 for Normal data)

• e.g. Bernoulli, Binomial, Poisson, Gamma, etc.

GLM

g(µi) = Xθ

Link function, g: monotonic, differentiable (usually known)

• g is identity function for Normal data
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1 Introduction to Nonparametric Regression

2 Overview of Functional Data Analysis

3 Functional Generalized Additive Models
Estimation
Approximate Inference

4 Numerical Results
Simulations
Diffusion Tensor Imaging Data

5 Extensions
Non-Identity Link GAMs
Multiple Predictors
Sparse, Noisy Predictor Functions - Current Work
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FDA Intro

• Sampling units are functions, Xi(t), instead of scalars/vectors
• Key assumption: functions are smooth
• In practise: X(t) observed on finite grid and pre-smoothed.
• Often derivatives of X(t) are of interest
• Multivariate analysis with sums replaced by integrals
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Examples of Functional Data

• Time Series: X(t) is temperature on day t at a weather station
• DTI: X(t) is some measure of diffusion at position t in tract
• Tracking movements of points in space: X(t), Y (t)

• X-Y coordinates of pen on paper at time t
• p(x) is a probability density
• Image analysis: Bivariate functional data
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Common Tools for FDA

• Functional descriptive statistics, e.g. mean function µx(t)
• Registration - line up features (e.g. zero crossings) of curve
• Functional Principal Components Analysis (fPCA)

• Exploratory technique for identifying important features
• Dynamics - Differential Equations models involving X(t)
• Functional Regression - response and/or predictor are
functions
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Functional Regression - Setup

• Goal: predict Y using function X : T → X ; T closed interval
• For now continuous, normally distributed response with one
functional predictor (will be relaxed later)

• X(t) observed at finite number of points in T and
presmoothed

• T = [0, 1] w.l.o.g.

NP Intro FDA FGAM Numerical Results Extensions



Mathew McLean Functional Generalized Additive Models

Functional Linear Model (FLM)

• The most commonly used functional regression model:

E(Yi |Xi) = β0 +
∫
T
β(t)Xi(t) dt

β(t) is unknown coefficient function to be estimated from data
• Effect of X on Y is linear for each t (Easy to interpret)

• Linear Model with an infinite number of predictors
(limit of Riemann sum approximation)

• Coefficient function commonly estimated in of two ways
1) Using B-splines and roughness penalty
2) Using function principal components

• Is goal prediction or estimating β(·)?
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FLM as limit of LM

• Back to multivariate data: Observe function at finite number
of points

xij ≡ Xi(tj); j = 1 . . . , J

• Linear Model:

E(Yi |Xi1, . . . ,XiK ) = β0 +
p∑

j=1
βjxij = β0 +

∑
j=1

β∗j Xi(tj)∆tj

(think Riemann sum)
• Letting J →∞ we arrive at

E(Yi |Xi) = β0 +
∫
T
β(t)Xi(t) dt
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Functional Linear Model (FLM)

• The most commonly used functional regression model:

E(Yi |Xi) = β0 +
∫
T
β(t)Xi(t) dt

• Effect of X on Y is linear for each t (Easy to interpret)
• Linear Model with an infinite number of predictors
(limit of Riemann sum approximation)

• Coefficient function commonly estimated in of two ways
1) Using B-splines and roughness penalty
2) Using function principal components
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Extending the FLM

• Linear Model not general enough to model complex
relationships between response and predictor functions

• How to improve FLM in a way that is:
1) Highly flexible (low bias)
2) Avoids curse of dimensionality (low variance)
3) Easy to interpret (not a "black box")
4) Has FLM as a special case
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An Additive Model With Functional Predictor - FGAM

• The model we propose is

E(Yi |Xi) = θ0 +
∫
T

F{Xi(t), t} dt

unknown bivariate function F : X × T → R
• Need to impose smoothness of F(·, ·) in x and t

• Two smoothing parameters (Using only one not justified here)
• If F(x, t) = β(t)x, we get the FLM
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An Additive Model With Functional Predictor - FGAM

E(Yi |Xi) = θ0 +
∫
T

F{Xi(t), t} dt

• Compare with the additive model

xij ≡ Xi(tj) fj(·) ≡ F(·, tj)∆tj

E(Yi |Xi1, . . . ,XiJ ) = θ0 +
J∑

j=1
fj{xij} = θ0 +

J∑
j=1

F{xij , tj}∆tj

• Let J →∞ arrive at FGAM
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How to represent F(x , t)?

• We will use tensor products of univariate B-splines
• Instead of:

F(x, t) =
K∑

j=1
θjBj(x, t)

• We have:

F(x, t) =
K1∑
j=1

K2∑
j=1

θjkBX
j (x)BT

j (t)
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How to represent F(x , t)?

F(x, t) becomes

F(x, t) =
Kx∑
j=1

Kt∑
k=1

θjkBX
j (x)BT

k (t)

• {BX
j (x) : j = 1, . . . ,Kx} and {BT

k (x) : k = 1, . . . ,Kt} are
low-rank, univariate B-spline bases

• Equally spaced knots, must specify degree of the spline and
number of basis functions
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Tensor Product B-splines

x
t

z
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Putting It Together

E(Yi |Xi) = θ0 +
∫
T

F{Xi(t), t} dt

F(x, t) =
Kx∑
j=1

Kt∑
k=1

θjkBX
j (x)BT

k (t)

• The model becomes

E(Yi |Xi) = θ0 +
Kx∑
j=1

Kt∑
k=1

θjkZjk(i) = Zθ

• Zjk(i) =
∫

T BX
j {Xi(t)}BT

k (t) dt
• Z is N × (1 + KxKt) matrix of Zjk(i) with first column 1

NP Intro FDA FGAM Numerical Results Extensions



Mathew McLean Functional Generalized Additive Models

Example Estimated Surface

Estimated surface F̂(x, t) and two predictor curves.
• The solid curve belongs to a control and the dashed curve
belongs to an MS patient.
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Identifiability

• Define F∗(x, t) = F(x, t) + g(t), where
∫
T g(t) dt = 0

Notice that ∫
T

F∗(x, t) dt =
∫
T

F(x, t) dt

BAD! Model is not identifiable

• Need to use constraints to ensure identifiability and
interpretability of our model.

• Also check for numerical rank deficiency during fitting
• Specific constraint not too important, except when
constructing confidence bands
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Transforming the Functional Predictor

Idea: Transform functional predictor, X(t), to say, Gt(x) = G ◦X(t)
• The new surface to be estimated is F(g, t)
• Estimation procedure is the same
• Why?

• Improve predictive performance
• E.g. Use lth order derivative dl

dtl X(t) instead of X(t)
• Ensure new predictor data falls inside range of marginal basis

for X

• E.g. Quantile transformation: Ĝt(x) = n−1
n∑

i=1

1{Xi(t)<x}
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Splines

• Multiple smoothing parameters estimated simultaneously
• No iteration necessary (Note: backfitting not possible here)
• Fast, numerically stable fitting methods
• Easily extends to additional predictors and other exponential
family distributions

• We use a specific type known as P-splines (Marx & Eilers,
1996)

• Other types of bases and penalties possible
• Not as lacking in theory as they used to be
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Penalized Likelihood Estimation

Penalized least squares objective function:

(Y− Zθ)T (Y− Zθ) + θTPθ

• P = λxPx + λtPt incorporates difference penalties on X and t
• Closed form solution for the unconstrained parameters is
given by

θ̂ = (ZTZ + P)−1ZT Y

• Check for rank deficiency during fitting
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Generalized Cross Validation - GCV

The smoothing parameters are chosen by minimizing the GCV
score

GCV (λx , λt) = ||y−Hy||2
N − γ tr (H)

• H = Z(ZTZ + P)−1ZT is the hat matrix (ŷ = Hy)
• γ ≥ 1 is tuning parameter usually selected to be 1.2-1.4 to
force GCV to do more smoothing
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Variance of the estimated surface

Some possibilities
• Sandwich estimator: okay if bias is small
• (empirical) Bayesian estimator: attempts to account for bias
• Use bootstrap: account for bias and uncertainty λ’s
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Confidence Bands for True Surface

• Interval from Bayesian estimator recommended for our
implementation,

• C.I. based on SW estimator under-covered for nonlinear F(·, ·)
• Bayesian interval has good "average" performance

• coverage close to nominal when averaged across all x and t
• Coverage can still be poor at individual xi and tj values
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Testing for Constant Surface or FLM

• Can test H0 : θ = 0 and H0 : F = 0 using sandwich estimator

• Notice ∂2

∂x2 F(x, t) = 0 for all x and t implies

F(x, t) = β(t)x

• Can construct confidence bands for ∂2

∂x2 F(x, t) to check FLM
• Easy to do since derivatives of B-splines are easy to compute
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Implementation

• Our code will soon be available in R package refund
• Estimation is done using the mgcv package of Wood
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Other Functional Regression Models

• FLM with roughness penalty (FLM1)
• FLM with fPCA (FLM2)
• Functional Additive Model of Yao+Müller: GAM in f.p.c.
scores (FAM)

• Fully nonparametric kernel estimator of Ferraty+Vieu (FV):

r̂(X) =
∑N

i=1 Yi K
{
h−1d(X ,Xi)

}∑N
i=1 K {h−1d(X ,Xi)}

,

where K is an asymmetrical kernel with bandwidth h and d is
a semimetric.
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Data Generation

• 1000 simulations, N = 100 curves (67 for training, 33 for
testing) sampled at 200 points in T = [0, 1]

• Xi(t) =
∑J

j=1 γj [Z1ijφ1j(t) + Z2ijφ2j(t)] where

Zhij ∼ N (0, 4
j2 ), φ1j(t) =

√
2 cos(πjt), φ1j(t) =

√
2 sin(πjt)

• J controls smoothness of X

• 1) F(x, t) = xt and 2) F(x, t) = −.5 + exp
[
−( x

5 )2 − ( t−.5
.3 )2

]
.

• The error variance changes each sample so that the empirical
signal to noise ratio (SNR) remains constant.

• Kx = 6, Kt = 7, dx = dt = 2, γ = 1.0 and cubic B-splines
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Predictive Performance - Median RMSE
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• Four different empirical signal to noise ratios: 1, 2, 4, 8
• Rough (J=500) and smooth (J=5) predictor functions.
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Diffusion Tensor Imaging

• Study comparing brains images of subjects with Multiple
Sclerosis with healthy controls

• At each of 93 locations in several tracts of the brain, measure
diffusion of water which is summarized by a 3× 3 symmetric,
positive-definite matrix

• 3 functional measurements summarizing the diffusion:
• Parallel diffusivity - largest eigenvalue
• Perpendicular diffusivity - average of two other eigenvalues
• Fractional anisotropy (=0 if isotropic diffusion)

• Response is PASAT score: a cognitive test scored from 0-60,
administered to MS patients only

• MS patients are known to perform poorly on this test
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Estimated Surface

Estimated surface F̂(x, t) and two predictor curves.
• The solid curve belongs to a control and the dashed curve
belongs to an MS patient.

• Kx = 6, Kt = 7, dx = dt = 2, γ = 1.4 and cubic B-splines
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Fixed slices of F̂ and ∂2/∂x2F̂(x , t)
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• Untransformed parallel diffusivity with PASAT score as the
response variable.
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Leave-One-Curve-Out Prediction Error

• RMSE=
[
N−1

N∑
i=1

(yi − ŷ(i))2
]1/2

,

ŷ(i) is the predicted value of the ith response when that sample is
left out of the estimation

Measurement FGAM-O FGAM-T FLM1 FLM2 FV FAM
Perp. Diffusivity 12.22 10.46 10.98 11.27 11.16 11.71
Frac. Anisotropy 12.55 11.60 11.87 11.91 12.11 12.70
Para. Diffusivity 11.94 12.09 12.32 12.24 11.97 11.86

• FGAM with quantile transformation seems to perform best
for this example
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Extension to Other Link Functions

• Easy to extend to Y from any exponential family distribution
• P-ILRS now used for fitting
• GCV score uses deviance in numerator
• Use outer iteration: Penalized GLM fit for each pair of
smoothing parameters
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Adding Additional Predictors

Fitting a model such as

g{E(Yi |Xi,1,Xi,2,Wi)} = θ0 +
∫
T1

F1{Xi,1(t), t}dt

+
∫
T2

F2{Xi,2(t), t}dt + f3(Wi),

is easy due to the modularity of penalized splines
• This model would have three constraints and five smoothing
parameters
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Idea of Variational Approximation

• Approximate solution to optimization problem by restricting
class of functions being considered

• Used in statistics mostly to approximate posterior
distributions, usually by assuming density factors

• Easy to apply in same situations where Gibbs Sampler can be
used.

• Much faster than MCMC, but cannot be made arbitrarily
accurate
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Why use Variational Bayes with FGAM?

• A Bayesian Mixed Model approach will allow for the handling
of partially observed predictor curves measured with error

• Using a Variational Approximation avoids the computational
burden of MCMC

• Bootstrap Confidence Intervals can be obtained for all model
parameters
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New Setup

• x̃i(t) = µx(t) +
∑M

m=1 ξimφm(t), ξim ∼ N (0, νm)
• All initially estimated using fPCA: PACE (Yao, Müller &

Wang, 2005)

• Improper Gaussian prior for θ: p(θ|λx , λt) ∝ exp
(
−1

2θTPθ
)

• Use mixed model representation to avoid numerical issues due
to rank deficiency of penalty∫

T
F(x̃i(t), t) ≈ LTBξi θ = LTBξiT0β + LTBξiTpδ

• L is vector of quadrature weights
• Bξi is matrix of tensor product B-spline evaluations
• β and δ are coefficients for unpenalized and penalized parts of

F(·, ·), respectively
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Directed Acyclic Graph
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Complications

• The two smoothing parameters are difficult to separate
• Use numerical integration

• Density for Y depends nonlinearly on the principal
component scores, ξi .

• Use Laplace Approximation for optimal density
• Use Newton’s method to find mode. Scaling important to

speed convergence
• Other parameters have closed-form optimal densities due to
use of conjugate priors
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Current Status

• Full algorithm for updating all parameters developed and
implemented in R

• Issues updating p.c. scores
• Difficulty in choosing step size for optimizer, numerical errors
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