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Introduction
We introduce the functional generalized additive model (FGAM), a novel regression model for association
studies between a scalar response and a functional predictor. Rather than having an additive model in a
finite number of principal components as in Muller and Yao (2008), our model incorporates the functional
predictor directly and we regard our model as the natural functional extension of generalized additive
models. Our model is more flexible than the functional linear model (FLM), while retaining its ease of
interpretation.

Setup and Model

Suppose one observes data {(Xi(t), Yi) : t ∈ T }
for i = 1, . . . , N , whereXi is a real-valued, random
curve on the compact interval T and Yi is a scalar.
We assume that the predictor, X(·), is observed at
a dense grid of points. The FGAM is given by

g{E(Yi|Xi)} = θ0 +

∫
T
F{Xi(t), t} dt, (1)

where F (·, ·) is an unknown regression function
and X(t) is a functional covariate.

• For identifiability, we use the constraints∑N
i=1 F{Xi(t), t} = 0 for all observation times, t.

• To avoid potentially having a tensor product of
B-splines with no observed data on its support,
we also consider transforming X(t) by its em-
pirical cdf for each value of t. F (p, t) is now the
effect of X(t) being at its pth quantile.

• The model is invariant to transformations of the
functional predictor. If an FLM holds for any
transformation, the FGAM still holds.

DTI Data
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• We apply our model to a study comparing white matter tracts of multiple scle-
rosis (MS) patients with control subjects using diffusion tensor imaging.

• MS is a central nervous system disorder leading to lesions in white matter which
disrupts the ability of cells in the brain to communicate with each other.

• We study the corpus callosum tract here due to its importance in cognition.
• We use three different functions of the eigenvalues from the diffusion tensors

as functional predictors: parallel diffusivity, perpendicular diffusivity, and frac-
tional anisotropy.

Estimation
We model F (·, ·) using tensor products of B-
splines:

F (x, t) =

Kx∑
j=1

Kt∑
k=1

θj,kB
X
j (x)BTk (t) (2)

where {BXj (x) : j = 1, . . . ,Kx} and {BTk (x) : k =
1, . . . ,Kt} are spline bases.

• We use the P-splines of Eilers & Marx (1996)
• The model can be fit in R using the mgcv pack-

age. P-IRLS is used to maximize the penalized
log-likelihood for each choice of the smoothing
parameters, which are chosen to minimize GCV.

• Including multiple functional predictors as well
as scalar predictors in the model is simple.

• In the identity link case, we use sandwich esti-
mators of the variance of the estimated surface
to construct approximate 95% confidence bands
and compute pseudo-t statistics.

• Also obtain confidence bands for the estimated
second derivative surface w.r.t. x and check for
significant differences from 0 to roughly assess
if an FLM would be sufficient.

Results
We evaluate our model by predicting the score on a
cognitive test called the PASAT. The outcome takes
integer values between 0 and 60. We compare the
out of sample predictive performance of the FGAM
(assuming the response is Gaussian) with the FLM
fit using roughness penalties (FLM1) and func-
tional principal component analysis (FLM2) and a
functional kernel regression model (FKRM).
Sample FGAM fit for a transformed predic-
tor (see second 3D plot in top left as well):

a) Contour Plot of Estimated Surface
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b) Contour Plot of Pseudo t−Statistics
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The results from considering a logistic link func-
tion assuming a binomial response were similar.
A sample of slices of the estimated surface (first
row) and estimated second derivative surface:
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We also fit a logistic link FGAM to predict
the MS status of the subjects in the study.

a) RMSE for PASAT Score Response b) ROC curves for Prediciting MS status
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Simulation Study
For each of eight scenarios, we generated 1000
replicate datasets each consisting of 100 curves
sampled at 200 equally-spaced points in [0, 1]. Two
cases each are considered for the spacing of the
eigenvalues, γ, of the covariance function of X(·);
the rate of decay of the eigenvalues, α; and the er-
ror variance, σ2

ε . We perform one group of simula-
tions where the FLM is the true model and another
group where it is not.
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a) Sample Predictor Curves
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b) True Coefficient Function β(t)
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We see that the FGAM performs nearly identical to
the FLM when the FLM is the true model and pro-
vides substantial improvements in the case when
the FLM is not the true model:
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Open Questions
• The dataset contains several more tracts and sev-

eral more measurements for each tract. Faster
fitting methods allowing for all these possible
functional predictors to be modelled at once and
ways for determining which predictors are truly
significant are needed.

• Many of the subjects had multiple scans per-
formed. This longitudinal aspect of the study
was not considered, but potentially could be us-
ing mixed models.
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