# Functional Generalized Additive Models

Mathew McLeant , Giles Hookert, Ana-Maria Staicut, Fabian Scheiplt, David Ruppertt †Cornell University, ‡NC State University, ‡LMU Munich, ¶mwm79@cornell.edu



b) Contour Plot of Pseudo t-Statistics

## Motivating Dataset

- (MS) patients with healthy controls
- tract position t
- Goal: use X(t) to predict (scalar) health out-  $\square$  Our model come Y and identify which portions of the tract are most important for the prediction

## Standard Model: FLM

- Assume that the predictor,  $X(\cdot)$ , is observed at a dense grid of points on closed interval  $\mathcal{T}$ .
- Most commonly used model is

$$E(Y_i|X_i) = \theta_0 + \int_{\mathcal{T}} \beta(t)X_i(t)dt,$$

where  $\beta(\cdot)$  is an unknown smooth regression function and X(t) is a functional covariate.

• For each t effect of  $X_i(t)$  on  $Y_i$  is linear.

## New Model: FGAM

- Linearity assumption of FLM is often too strong
- We desire a more flexible model that remains easy to understand and estimate
- We propose the model

$$E(Y_i|X_i) = \theta_0 + \int_{\mathcal{T}} F\{X_i(t), t\} dt,$$

where F(x,t) is an unknown, smooth function

• Two tuning parameters control complexity of *F* Need identifiability constraints

## Intuition From Multivariate Data

- Let  $x_{ij} = X_i(t_j); \quad \beta_j = \beta(t_j); \quad j = 1, \dots, J$
- Thinking of a Riemann sum, consider

$$E(Y_i|\mathbf{X}_i) = \sum_{j=1}^p \beta_j x_{ij} = \sum_{j=1}^p \frac{\beta_j(t_j)}{J} X_i(t_j) J^{-1}$$

- FLM obtained as limit of this LM as  $J \to \infty$ .
- Now define  $f_i(\cdot) = F(\cdot, t_i)J^{-1}$  and consider AM  $E(Y_i|\mathbf{X}_i)\sum_{j=1}^J f_j\{x_{ij}\} = \sum_{j=1}^J F\{x_{ij},t_j\}J^{-1}$

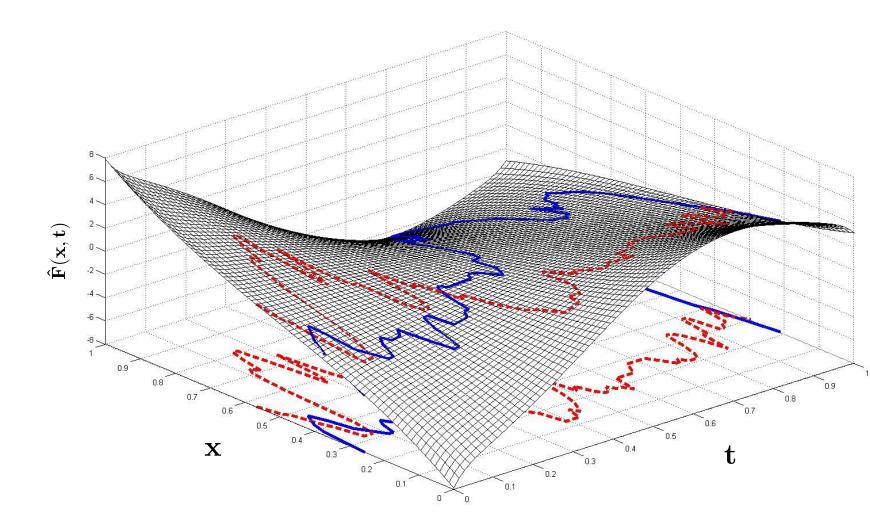
FGAM is limit of this AM as  $J \to \infty$ .

#### Contributions

• Diffusion Tensor Imaging (DTI) study compar- FGAM: A novel regression model for association ing the white matter tracts of Multiple Sclerosis 🔼 studies between a scalar response and a functional predictor that can model complex response-• Each scan produces a signal/function X(t) of  $\square$  predictor relationships while remaining interpretable.

- is highly flexible (low bias)
- avoids curse of dimensionality (low variance)
- is easy to interpret (not a "black box")
- Easily fit using fast, polished R package mgcv
- has FLM as a special case  $(F(x,t)=\beta(t)x)$

## Example Estimated Surface



- Interpretation: Small t values appear most influential; subject with red predictor curve gets higher predicted response
- Nonlinearity in x suggests that an FLM may be inadequate

## R Implementation

- FGAM implemented in R package refund
- Function fgam acts as a wrapper for gam in mgcv
- E.g.  $g(Y_i) = \theta_0 + f(z_1) + \int_{\mathcal{T}_1} F(X_{i1}(t), t) dt +$  $\int_{\mathcal{T}_2} \beta(t) X_{i2}(t) dt$  can be fit by specifying fgam  $(y \sim s(z1) + af(X1) + lf(X2), ...)$
- Extends mgcv; therefore, it can handle alternative penalties and bases, generalized responses, random effects, automatic model selection, multivariate smooth terms, etc.

## Funding

My work was supported in part by NIH grant R01NS060910, NSF grant DMS-0805975, and an NSERC PGS-D.

#### Estimation

- The surface  $F(\cdot, \cdot)$  is parameterized using tensor products of B-splines:
- We use the P-splines of Eilers & Marx (1996)
- $F(x,t) = \sum \sum \theta_{j,k} B_j^X(x) B_k^T(t)$
- $\{B_i^X(x): j=1,\ldots,K_x\}$  and  $\{B_k^T(x): k=1,\ldots,K_t\}$  are spline bases.
- *Y* can be from any exponential family distribution
- Smoothing parameters are chosen using generalized cross validation
- Modularity of P-splines: including multiple functional or scalar predictors in the model is simple
- Use generalization of Bayesian confidence bands of Wahba (1983) to construct approximate confidence bands for the true surface to account for bias due to smoothing
- Also obtain confidence bands for the estimated second derivative surface w.r.t. *x*: Significant differences from  $\partial^2/\partial x^2 F(x,t) = 0$  at a particular (x,t) suggests FLM does not hold there
- Can transform functional predictor to possibly improve predictions or numerical stability

#### Results

- Outcome variable is score on a cognitive test called PASAT, which takes integer values between 0-60
- $\bullet$  Predictor is transformed parallel diffusivity: largest eigenvalue summarizing the diffusion at position t

a) Contour Plot of Estimated Surface

- Transformation used is the empirical cdf:  $\widehat{F}(p,t)$  is effect of X(t) being at its pth quantile
- a) Plot of  $\widehat{F}(p,t)$  including two subjects' transformed predictor curves
- Black curve in a) will have higher predicted response than the blue
- b) is contour plot of  $\widehat{F}(p,t)$  divided by its estimated standard error
- Middle values of t appear to be very influential on PASAT score
- Good out-of-sample RMSE performance compared with other popular scalar on function regression models
- -30 0.2 0.4 0.6 0.8 Quantile (p)
- Simulation studies show
  - FGAM performs nearly as well at out-of sample prediction as FLM when the true model is an FLM
  - FGAM offers substantial gains in predictive performance when FLM is not the true model
  - FGAM is very competitive with other non-FLM scalar on function regression models
  - The proposed Bayesian confidence intervals have good average coverage probabilities

## Current Work

- Developing formal test of  $H_0$ :FLM vs.  $H_1$ :FGAM
- Use mixed model representation and test particular variance components

• Bayesian MM - estimation via MCMC or VB

Extending to sparsely observed predictor curves

- For Further Details
- McLean et al. (2012), Functional Generalized Additive Models, Journal of Computational and Graphical Statistics, to appear.
- Visit courses 2. cit. cornell. edu/mwmclean
- R code available in refund package on CRAN