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Functional Regression - Setup and Notation

• Goal: From N samples predict Y using smooth function
X : T → X ;

• T closed interval. T = [0, 1] w.l.o.g. Often, t is time

• For now, r.v Y is continuous and normally distributed

• X(t) observed at finite number of points and presmoothed
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Functional Linear Model (FLM)
The most commonly used functional regression model:

FLM

E(Yi |Xi) = β0 +
∫
T
β(t)Xi(t) dt i = 1, . . . ,N

• β(·) is unknown smooth coefficient function
• Var(Yi |Xi) = σ2

• Effect of X on Y is linear for each t (Easy to interpret)

• Linear Model with an infinite number of predictors
(limit of Riemann sum approximation)

• Coefficient function commonly estimated in of two ways
1) Using B-splines and roughness penalty
2) Using function principal components

FLM FGAM Estimation and Inference Numerical Results Summary
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FLM as limit of LM

Back to multivariate data
• Observe each function at J equally-spaced points

xij ≡ Xi(tj); βj ≡ β(tj); j = 1 . . . , J

• Linear Model:

E(Yi |Xi1, . . . ,XiK ) = β0 +
p∑

j=1
βjxij = β0 +

∑
j=1

βj(tj)
J Xi(tj)J−1

(think Riemann sum)
• Letting J →∞ we arrive at

E(Yi |Xi) = β0 +
∫
T
β(t)Xi(t) dt
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Extending the FLM

• As with LM for multivariate data, FLM not general enough
• Need model for more complex response-predictor relationships

• We desire a model that is:

1) Highly flexible (low bias)
2) Avoids curse of dimensionality (low variance)
3) Easy to interpret (not a "black box")
4) Has FLM as a special case
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Mathew McLean Functional Generalized Additive Models

Extending the FLM

• As with LM for multivariate data, FLM not general enough
• Need model for more complex response-predictor relationships

• We desire a model that is:
1) Highly flexible (low bias)
2) Avoids curse of dimensionality (low variance)
3) Easy to interpret (not a "black box")
4) Has FLM as a special case

FLM FGAM Estimation and Inference Numerical Results Summary



Mathew McLean Functional Generalized Additive Models

An Additive Model With Functional Predictor - FGAM

The model we propose is

FGAM

E(Yi |Xi) = θ0 +
∫
T

F{Xi(t), t} dt

unknown bivariate function F : X × T → R

• Need to impose smoothness of F(·, ·) in x and t

• Two parameters, λx and λt control function complexity

• If F(x, t) = β(t)x, we get the FLM

FLM FGAM Estimation and Inference Numerical Results Summary
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Example Estimated Surface

Estimated surface F̂(x, t) and two predictor curves.
• The solid curve belongs to a control and the dashed curve
belongs to an MS patient.
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Identifiability

• Define F∗(x, t) = F(x, t) + g(t), where
∫
T g(t) dt = 0

Notice that ∫
T

F∗(x, t) dt =
∫
T

F(x, t) dt

Need constraints to ensure identifiability and interpretability

• Also check for numerical rank deficiency during fitting

• Different constraints are possible, will affect c. bands

FLM FGAM Estimation and Inference Numerical Results Summary
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Model for F(x , t)

We use bivariate tensor product B-splines for F(x, t)

F(x, t) =
Kx∑
j=1

Kt∑
k=1

θjkBX
j (x)BT

k (t)

• {BX
j (x) : j = 1, . . . ,Kx} and {BT

k (x) : k = 1, . . . ,Kt} are
low-rank, univariate B-spline bases

• Equally spaced knots, must specify degree of the spline and
number of basis functions

FLM FGAM Estimation and Inference Numerical Results Summary



Mathew McLean Functional Generalized Additive Models

Putting It Together

E(Yi |Xi) = θ0 +
∫
T

F{Xi(t), t} dt

F(x, t) =
Kx∑
j=1

Kt∑
k=1

θjkBX
j (x)BT

k (t)

• The model becomes

E(Yi |Xi) = θ0 +
Kx∑
j=1

Kt∑
k=1

θjkZjk(i) = Zθ

• Zjk(i) =
∫
T BX

j {Xi(t)}BT
k (t) dt

• Z is N × (1 + KxKt) matrix of Zjk(i) with first column 1

FLM FGAM Estimation and Inference Numerical Results Summary
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Some Notes On Penalized Regression Splines

• Multiple smoothing parameters estimated simultaneously

• Fast, numerically stable fitting methods

• Easily extends to additional scalar or functional predictors

• Response can be from any exponential family of distributions

• We use specific type known as P-splines (Marx & Eilers, 1996)

• Other types of splines and penalties possible
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Penalized Likelihood Estimation

Penalized least squares objective function is:
(ignoring constraints)

(Y− Zθ)T (Y− Zθ) + λxθTPxθ + λtθ
TPtθ

• P = λxPx + λtPt incorporates difference penalties on X and t
• Solution is

θ̂ = (ZTZ + P)−1ZT Y

• Hat Matrix
H = Z(ZTZ + P)−1ZT

tr (H) = effective degrees of freedom.

• Measures effective number of parameters in fit
• Value of λ not informative for quantifying amount of smoothing
• 1 + dxdt ≤ tr(H) ≤ 1 + KxKt where dx , dt are order of penalties

FLM FGAM Estimation and Inference Numerical Results Summary
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Penalized Likelihood Estimation
Penalized least squares objective function is:
(ignoring constraints)

(Y− Zθ)T (Y− Zθ) + θTPθ

• P = λxPx + λtPt incorporates difference penalties on X and t
• Note: Can handle “p > N”

• No automatic model selection, though this is possible
• Must check for rank deficiency during fitting

• Possible to formulate as a mixed effects model
• Smoothing parameters selected using GCV
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Variance of Estimated Surface
• We use generalization of Bayesian estimator of Wabha (1983)

var(θ̂) = σ̂2(ZTZ + P)−1

σ̂2 is a consistent estimator of σ2

• Accounts for bias, but assumes fixed smoothing parameter

• Variance of estimated surface F̂ = Bθ̂ is
var(F̂) = Bvar(θ̂)BT

• B is matrix of B-spline evaluations over grid of x, t values

• C.I. using this estimator has good "average" performance

• Coverage close to nominal when averaged across all x and t,
• Exception is when bias becomes too large (over-smooth)
• Coverage can still be poor at individual xi and tj values

• Accounting for identifiability constraints improves coverage

FLM FGAM Estimation and Inference Numerical Results Summary
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Testing for Constant Surface or FLM

• Notice ∂2

∂x2 F(x, t) = 0 for all x and t implies

F(x, t) = β(t)x

• Can construct confidence bands for ∂2

∂x2 F(x, t) to check FLM

• Easy to do since derivatives of B-splines are easy to compute

• Can test H0 : θ = 0 and H0 : F = 0 using sandwich estimator

FLM FGAM Estimation and Inference Numerical Results Summary
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Transforming the Functional Predictor

Idea: Transform functional predictor, X(t), to say, Gt(x) = G ◦X(t)
• The new surface to be estimated is F(g, t)
• Estimation procedure is the same

• Why transform X(t)?

• Improve predictive performance

• Improve numerical stability (no 0 columns in design matrix)

• Ensure new data falls inside range of X marginal basis

• Ex. Quantile transformation: Ĝt(x) = n−1
n∑

i=1
1{Xi(t)<x}

FLM FGAM Estimation and Inference Numerical Results Summary



Mathew McLean Functional Generalized Additive Models

Transforming the Functional Predictor

Idea: Transform functional predictor, X(t), to say, Gt(x) = G ◦X(t)
• The new surface to be estimated is F(g, t)
• Estimation procedure is the same
• Why transform X(t)?

• Improve predictive performance

• Improve numerical stability (no 0 columns in design matrix)

• Ensure new data falls inside range of X marginal basis

• Ex. Quantile transformation: Ĝt(x) = n−1
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Implementation

• λ’s chosen using algorithms in mgcv package of S. Wood
• Our code will soon be available in R package refund
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Functional Regression Models Used

• FLM with roughness penalty (FLM1)

• FLM with fPCA (FLM2)
• Functional Additive Model of Yao+Müller:

• GAM in f.p.c. scores (FAM)

• Fully nonparametric kernel estimator of Ferraty+Vieu (FV):

r̂(X) =
∑N

i=1 Yi K
{
h−1d(X ,Xi)

}∑N
i=1 K {h−1d(X ,Xi)}

,

• K (·) is an asymmetrical kernel with bandwidth h,
• d is a semimetric

• FGAM
• Using original predictor functions
• Using quantile transformed predictor functions

FLM FGAM Estimation and Inference Numerical Results Summary
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Simulation Setup
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• σ2 chosen so that SNR=var [
∫

T F{X(t), t} dt]
σ2 is constant
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Predictive Performance - Median RMSE

• 1000 simulations with 67 training samples, 33 test samples
• Four different empirical signal to noise ratios: 1, 2, 4, 8
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Diffusion Tensor Imaging

• Interested in how Multiple Sclerosis affects cognitive function

• Compare brains of MS patients with healthy controls

• X(t) is measure of diffusion of water in particular brain tract
• 3 functional measurements summarizing the diffusion:

• Parallel diffusivity - largest eigenvalue
• Perpendicular diffusivity - average of two other eigenvalues
• Fractional anisotropy (=0 if isotropic diffusion)

• Response is PASAT score: a cognitive test scored from 0-60,

• Administered to cases only
• MS patients known to perform poorly on this test

FLM FGAM Estimation and Inference Numerical Results Summary
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• X(t): Parallel Diff.

• Both models have similar
out-of-sample prediction
performance
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Fixed slices of F̂ and ∂2/∂x2F̂(x , t)
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• Untransformed parallel diffusivity as functional predictor
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Leave-One-Curve-Out Prediction Error

• RMSE=
[
N−1

N∑
i=1

(yi − ŷ(i))2
]1/2

,

ŷ(i) is the prediction for yi when it is left out of training set

Measurement FGAM-O FGAM-T FLM1 FLM2 FV FAM
Perp. Diffusivity 12.22 10.46 10.98 11.27 11.16 11.71
Frac. Anisotropy 12.55 11.60 11.87 11.91 12.11 12.70
Para. Diffusivity 11.94 12.09 12.32 12.24 11.97 11.86

• FGAM with transformation seems to perform best here
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Future Work on FGAM

• Work with sparse, noisy predictor measurements

• Formal test for checking for FLM

• Ability to fit models with many more parameters than data

• Model selection with several functional predictors

• Alternatives to GCV for choosing smoothing parameters

FLM FGAM Estimation and Inference Numerical Results Summary
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Summary

Proposed the Functional Generalized Additive Model:
A new model for predicting scalar using functional predictors.

FGAM is
• Intuitive extension of additive models to functional data
• Highly flexible AND highly interpretable
• Easily estimated using penalized regression splines
• Serves as useful diagnostic for checking FLM

FLM FGAM Estimation and Inference Numerical Results Summary
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Advertising

• For further details and a list of references see

M.W. McLean, G. Hooker, A.-M. Staicu, F. Scheipl, D. Ruppert.
Functional Generalized Additive Models. Journal of
Computational and Graphical Statistics, to appear

• A copy of the paper and R code can be obtained from

http://people.orie.cornell.edu/mwm79/

• See package refund available on CRAN to fit FGAM in R
• Please send questions and feedback to

mwm79@cornell.edu
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