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Abstract

Sequential Monte Carlo algorithms are considered for computation with Bayesian semiparametric
regression models in streaming data applications. We work with a very flexible class of models that includes
generalized linear mixed models and generalized additive models. Compared to existing variational Bayesian
methods, we do not require restrictive assumptions about the form of the posterior density of interest and our
approach can be parallelized. Numerical studies compare our approach to batch Markov Chain Monte Carlo
and online mean field variational Bayes methods. A topical application to data involving step counts from
a wearable activity tracker is presented. Our algorithms are implemented in a package written in the R
software environment and make use of the Stan probabilistic programming language.

Keywords: real-time data analysis, generalized linear mixed models, penalized splines, online machine learning

1 Introduction

Advances in technology have lead to a proliferation of applications where data arrives in a streaming fashion.
Often, it is necessary to process the data immediately as it is collected, so an end-user may make decisions
in real-time. The majority of computational methods for regression models are designed to work only in the
batch setting, where analysis occurs only after the entire data set has been collected. The streaming setting
introduces additional challenges due to the speed at which the data arrive and the sheer volume of data that can
be collected. In many applications, such as when performing calculations on a smartwatch or smartphone, there
is also a limited computational budget because of the lightweight hardware involved and a need to conserve
battery power.

Semiparametric regression models are a popular tool in applied statistics due to their flexibility and
simple interpretation. There is an extensive literature on fitting semiparametric regression models to batch
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data in both the Bayesian and frequentist framework; see e.g., Ruppert et al. (2003) and Wood (2006) for
book-length treatments. Recent work, including Luts et al. (2014) and Luts (2015), has been concerned with
fitting semiparametric models to streaming data in real-time. In those works, online mean field variational
Bayesian (MFVB) methods were used to provide approximate posterior distributions.

MFVB (e.g., Wainwright and Jordan 2008) assumes that the posterior distribution of interest factorizes
into a convenient form to allow for quick, approximate inference, thus avoiding more computationally-intensive
techniques such as Markov Chain Monte Carlo (MCMC). Variational Bayes for real-time data analysis has
received recent attention in the literature, though the only work to consider online semiparametric regression as
we do in this manuscript is Luts et al. (2014). This reference and numerous others demonstrate that MFVB
is useful for estimating posterior modes. However, the product restriction it assumes can under-estimate the
variability of posterior quantities of interest.

Sequential Monte Carlo (SMC) methods (Del Moral et al. 2006) are a popular approach for sequential
Bayesian analysis that target the exact Bayesian posterior distribution. In particular they do not rely on
assumptions about the posterior density admitting a particular product form. SMC methods are a specialisation
of particle filtering methods (Chopin 2002) and are thus typically easy to implement (Doucet et al. 2001)
and parallelizable at certain stages (Lee et al. 2010). Recent advances, such as Gerber and Chopin (2015),
render SMC methods theoretically attractive in a range of applications. Unlike MCMC, these methods do not
require a separate chain to be run for each new observation and instead leverage an estimate of the posterior
at the previous time step as an importance sampling distribution. SMC was demonstrated to be effective for
semiparametric regression in Fan et al. (2008); however, that work only considered the analysis of batch data
and did not address the computational challenges associated with streaming data.

In this work, we investigated SMC methods for real-time Bayesian inference in semiparametric regression
models. Our algorithms do not suffer from the loss in accuracy of MFVB while still being feasible when
computational resources are limited. Details are provided for a model-independent algorithm that can be applied
to many different response types and covariance structures. Thus, unlike MFVB, we do not need to derive
special algorithms for each model of interest. We demonstrate the good performance of our algorithms on both
synthetic data and in a topical application to physical activity monitors.

The paper begins with an overview of semiparametric regression and SMC in Section 2 and Section 3,
respectively. Section 4 is the main section of the paper and presents our algorithms. Section 5 presents
numerical studies examining the performance of our algorithms and Section 6 concludes with a discussion.

2 Semiparametric Regression

In this section, we set up the class of statistical models. For this work, we considered a flexible class of models
known as generalized additive models (GAMs). First introduced in Hastie and Tibshirani (1986), a GAM has
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the form

yi ∼ EF(µi, φ), g(µi) = xT0iβ +
J∑

j=1
fj (xij ), i = 1, . . . , N (1)

where xi = (xi1, . . . , xip0 )T , EF(µi, φ) denotes a two-parameter location-scale exponential family distribution with
mean µi and (possibly-unknown) scale parameter φ, and the link function, g(·), is a known, smooth, monotonic
function. The q0-vector β is an unknown vector of coefficients for the linear predictors in the model while the
fj (·) are unknown smooth functions to be estimated from the data.

We represent the unknown functional terms in (1) using low-rank spline bases for each fj ; that is,
fj (x) =

∑Kj
k=1 Bjk (x)bjk , where {Bj1(x), . . . , BjKj (x)} are known basis functions and the bjk are spline coefficients

to be estimated from the data. For our numerical experiments, we used a specific flavour of penalized splines
known as O’Sullivan penalized splines (O’Sullivan 1986). These were chosen for their numerical stability, ease
of implementation, and good performance in Bayesian semiparametric regression problems; as demonstrated in
Wand and Ormerod (2008), which obtained a canonical form that makes the bases suitable for the GAM set-up
under consideration.

Speed (1991) showed that it was possible to represent GAMs as generalized linear mixed models (GLMMs),
with the parameters that control the smoothness of the fj ’s becoming variance components in a GLMM. This
allows us to fit the model (1) using any of the tools available for mixed models, including Monte Carlo methods
for Bayesian hierarchical models. See Ruppert et al. (2003) for an in-depth treatment of fitting GAMs in this
framework. Using this approach, it is possible to represent (1) as the GLMM (e.g., Wand and Ormerod 2008,
Section 4)

yi
i.i.d.∼ EF(µi, φ), g(µi) = xTi β +

J∑

j=1
zTij uj , uj ∼ N(0, σ 2

j Iqj ), (2)

where Ip denotes a p× p identity matrix and Zj ≡ (zT1j , . . . , zTNj )T is the basis for the random effects, uj . The Zj
are obtained through a linear transformation of the original B-spline basis function evaluations that identifies
(2) with (1).

We can simplify notation by writing u ≡ (uT1 , . . . , uTJ )T , C ≡ [X : Z1 : · · · : ZJ ], and θ ≡ (βT , uT )T . We may
then express the linear predictor of the GLMM in (2) as η ≡ Cθ .

To complete a Bayesian specification of (2), we first place a weakly-informative independent Gaussian prior
on the vector of fixed effects β ∼ N(0, σ 2

β Iq0 ), with σ 2
β a fixed hyperparameter. For the variance components,

σ 2
j , we considered two alternatives. We implemented both half-Cauchy priors, which was the recommended

choice by Gelman (2006) for variance components in mixed models and also implemented uniform priors on the
logarithm of the variance components, as was done for the SMC algorithms in Chopin (2002). We also used
these priors for the scale parameter in the Gaussian response case.
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3 Sequential Monte Carlo

In this section, we provide a brief overview of SMC methods. A comprehensive review can be found in; e.g.,
Del Moral et al. (2006). SMC refers to a class of algorithms that iteratively approximate a sequence of
distributions (πt) using a weighted collection of particles:

π̂t =
P∑

p=1
w t
pδ (Θt

p),

where δ (·) is Dirac measure. In our Bayesian setting, πt(Θ) = πt{Θ| (y1, x1), . . . , (yt, xt)} is the posterior
distribution of the parameters in (2) after the first t data points have been observed. The number of particles P
must be chosen large enough so that

∑P
p=1 w t

pδ (Θt
p) provides a sufficiently accurate approximation to πt . SMC

is useful in applications where data are processed sequentially due to the natural sequence of slowly-varying
targets, such that (almost) independent local updates performed on the collection of particles can be used to
change the target of the algorithm from πt to πt+1.

SMC starts with an initial set of P particles and weights {Θ0
p, w0

p ≡ P−1; p = 1, . . . , P}, drawn from an
initial distribution π0. The weights for the pth particle at time t are given by

w t
p = w t−1

p
πt(Θt−1

p )
πt−1(Θt−1

p ) ∝ w t−1
p p(yt| xt,Θt−1

p ),

where the proportionality follows from factorization of the likelihood over the data yt and where we have defined
π0 to be the prior distribution for the model.

Each reweighting step adds more variability to the estimates as πt moves away from π0 and fewer and
fewer particles carry significant weight. This is known as “degeneracy” and is computationally wasteful because
even particles that do not contribute much to the representation of the target must still be processed. To remove
the insignificant particles from the algorithm, a resampling step is usually added. Popular approaches include
multinomial resampling (Gordon et al. 1993) and stratified resampling (Kitagawa 1996), and more recently,
quasi Monte Carlo resampling (Gerber and Chopin 2015).

To further combat degeneracy, Gilks and Berzuini (2001) proposed the resample-move algorithm, which adds
a move/rejuvenation step in which particles are moved according to a Markov transition kernel, K , that leaves
the target distribution invariant. This algorithm is summarized in Algorithm 1.

The resampling in Algorithm 1 is only performed if the empirical variance of the weights is above a certain
threshold. That is, the effective sample size (ESS) given by ESS(wt) = {

∑P
p=1(w t

p)2}−1 (assuming the weights
have been normalized to sum to one) is smaller than τP , where τ ∈ (0, 1), is a user-specified tuning parameter.

Choice of an efficient transition kernel K is important because this is the most computationally-demanding
step. A standard choice that we found to work well in our application is the Metropolis-Hastings kernel, which
we detail in the next section. Under mild and verifiable conditions, that include ergodicity of the Markov chain
generated by K , the SMC estimate produced by Algorithm 1 has been proven to be consistent in the limit as
P →∞ (Chapter 7, Del Moral et al. 2006).
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Algorithm 1 Resample-move algorithm
Initialize: Θ0

p
i.i.d.∼ π0, w0

p = P−1, p = 1, . . . , P
for t = 1, 2, . . . do

Reweight: w t
p ← w t−1

p
πt (Θt−1

t )
πt−1(Θt−1

p ) ; p = 1, . . . , P
Normalize: wt ← wt/

∑P
p=1 w t

p
Resample: {Θt−1

p , w t
p} ← {Θt−1

ip , P−1}; p = 1, . . . , P ; where the indices ip ∈ {1, . . . , P} are
chosen via some resampling scheme such as multinomial resampling

Move: Θt
p

i.i.d.∼ Kt(Θt−1
p , ·); p = 1, . . . , P ; where Kt is a transition kernel with stationary distribution πt

end for

4 SMC Algorithm for Real-Time Semiparametric Regression

In this section, we provide the full details of our resample-move algorithms generalized semiparametric regression
models.

4.1 Choice of Transition Kernel

In this section, we first detail the Gaussian response case, where conjugacy allows us to use a Gibbs sampler
for the move step, before considering the non-Gaussian exponential family case in the next subsection where we
employ a hybrid (Metropolis-within-Gibbs) sampler.

4.1.1 Gaussian Response

For the Gaussian response case, we have a closed-form for every full conditional distribution in the model, so
we may use Gibbs sampling for the move steps, as outlined below.

For θ , note that we may express the prior on the regression coefficients as

θ ∼ N(0,Σ), Σ ≡ blockdiag(σ 2
β Iq0, σ 2

1 Iq1, . . . , σ 2
J IqJ ).

With this prior, standard algebraic manipulations show that the full conditional for θ is then

θ| rest ∼ N
{
(CTC + σ 2

ε Σ−1)−1CT y, σ 2
ε (CTC + σ 2

ε Σ−1)−1},

where σ 2
ε denotes the scale parameter of the Gaussian response.

For the variance components, we use the result (see, e.g., Luts et al. 2014) that a random variable
σ ∼ half-Cauchy(A) has an equivalent representation using inverse-gamma auxiliary variables as

σ 2| a ∼ IG(1/2, 1/a), a ∼ IG(1/2, 1/A2).

Here, X ∼ IG(A, B) refers to a random variable with density f (x) = BAΓ(A)−1x−A−1 exp(−B/x), x > 0, where
Γ(·) denotes the gamma function. Under this representation, the full conditionals are given by

σ 2
j | rest ∼ IG

{
(qj + 1)/2, 1

2u
T
j uj + 1/aj

}
, aj |rest ∼ IG(1, 1/σ 2

j + 1/A2
j ), j = 1, . . . , J ;
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and

σ 2
j | rest ∼ IG

{
(t + 1)/2, 1

2 (y− Cθ)T (y− Cθ) + 1/aε
}
, aε|rest ∼ IG(1, 1/σ 2

j + 1/A2
ε ).

4.1.2 Generalized Case

When the response distribution is not Gaussian, the full conditional for the regression coefficients does not have
a closed-form. Hence, we cannot use a Gibbs sampling step to update those parameters and instead resort to
Metropolis-Hastings.

We chose to use an independent Metropolis-Hastings kernel with proposal density

N(µθ, εΣθ ), µθ ≡
P∑

p=1
wpθp, Σθ ≡

P∑

p=1
wp(θp − µθ )(θp − µθ )T ,

where ε > 0 is a user-specified tuning parameter. This propsoal was was also used in Chopin (2002). It is
justified asymptotically because for regular models, πn tends to a Gaussian distribution as n→∞. Thus, as
more data arrives, our moves become more efficient, which is important because, of course, they become more
computationally demanding. This proposal is also model-independent and can be easily extended to many
response types or covariance structures, Σ, that encorporate more complex nonparametric terms and different
penalization.

Note that it would be inappropriate to use a random walk proposal because this does not allow us to
monitor the Monte Carlo mixing through examination of the acceptance rate as is usual for MCMC. This is
because the acceptance rate does not take into account the possible deterioration in particle weights; it does
not matter if a particle with zero weight is mixing well.

For a specific example considered in our numerical studies, logistic regression, we have p(y| θ) = exp[yTCθ−
1T log{1 + exp(Cθ)}], so that the posterior for θ is given by

p(θ| rest) ∝ p(y| θ)p(θ|Σ) ∝ exp
[
yTCθ − 1T log{1 + exp(Cθ)}

]
exp
[
− 1

2θTΣ−1θ
]
.

The acceptance probability for a proposal θ ′ when the current value is θp is

r ≡ min
{
p(θ ′| rest)φ(θp; µθ,Σθ )
p(θp| rest)φ(θ ′; µθ,Σθ )

, 1
}

= min
{
exp
(
yTC[θ ′ − θp]− 1T log[1 + exp{C(θ ′ − θp)}]

)

× exp
(
− 1

2 [θ
′ − θp]T [Σ−1

p − Σ−1
θ ][θ ′ − θp]

)
, 1
}
.

For the variance components, we can use half-Cauchy priors and Gibbs sampling as detailed in the previous
section for the Gaussian response case. Another possibility, considered in Chopin (2002), is to update the
log-variance components along with θ using the independent Metropolis-Hastings kernel just described.
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4.2 Initial Values and Validation Period

Owing to the adaptive importance distribution used, it is necessary to initialize the algorithm with starting values
drawn from a partial posterior πtw for some tw > 0 to avoid degeneracy in the early stages of the algorithm
(Chopin 2002). To do this, we first fit the model in batch to an intial set of data of size nw using the NO-U-Turn
sampler of Hoffman and Gelman (2014). We refer to this period as the “warm-up”.

We also use a short validation period of size tv where we use visual diagnostics to compare the fit from
the SMC algorithm to the batch fits at fixed intervals of the validation period. A similar approach was used
in Luts et al. (2014). For example, the user may specify tw = 500 and tv = 100 with five checks during
the validation period. In this example, the SMC algorithm would be initialized using values determined from
MCMC on the data set of size 500, then SMC would be run over the validation period until t = 600, at which
point the user would visually compare the SMC results with the results of batch MCMC for sample sizes of
520, 540, 560, 580, and 600; and if necessary, increase the warm-up period and/or the number of particles.

An example plot is shown in Figure 1 involving simulated data with a binary response, one linear predictor,
z , and one nonlinear predictor, x . Point estimates and confidence bands are plotted for the SMC and batch
MCMC estimates at each of the sample sizes t = 520, 540, 560, 580, 600. In this example, the length of the
warm-up appears to be satisfactory as there is good agreement between the SMC and MCMC estimates.

520 540 560 580 600

(Intercept)

520 540 560 580 600

z

520 540 560 580 600

x quantile=0.25

520 540 560 580 600

x quantile=0.5

520 540 560 580 600

x quantile=0.75

520 540 560 580 600

sig2.u.x

Figure 1: Example validation diagnostic plot for logistic additive model with one linear predictor, z , and one
nonlinear predictor, x .

4.3 Resampling and Reweighting

We use stratified resampling for the resampling step in our algorithms. This has been demonstrated to have
superior performance to multinomial resampling (Douc et al. 2005; Hol et al. 2006). The steps needed to do the
resampling are provided in Algorithm 2.
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In the Gaussian additive model case when we use Gibbs sampling for the move steps, reweighting proceeds
exactly as outlined in Section 3. When using an independent Metropolis-Hastings kernel, as we do in the
logistic regression case, the reweighting step must be modified to take into account the (in)effectiveness of the
move step, as discussed in Chopin (2002).

To accomplish this, unmoved replicate particles are replaced by a single particle with weight proportional
to the number of unmoved replicates. For example, if θp has np replicates after resampling, but n′p ≤ np of
those particles have not changed after the move step, then those n′p particles are replaced by a single particle
with weight proportional to n′p. This gives a more accurate representation of the level of degeneracy, higher
values for the empirical variance of the weights, and more instances of resampling when needed. It also avoids
unnecessary repitition of computations for identical particles.

4.4 Full Algorithms

The algorithm for the Gaussian response case is given in Algorithm 2. We write θ ← π(·) to denote that the
parameter θ is updated using a random draw from the density π(·). Note that each parameter gains a subscript
p in the algorithm to denote the dependence on particle index. We use cTt to denote the tth row of C.

The algorithm for the generalized case is provided in Algorithm 3.

5 Experimental Results

In this section, we evaluate the performance of our SMC algorithms on both real and synthetic data. We compare
our algorithms with online MFVB and also with refitting the model at each time step using MCMC. Though the
latter approach is computationally infeasible in most streaming data settings when estimates are needed in
real-time, we include it here as a sort of oracle because we can use it to achieve arbitrarily accurate answers
by running a long enough Markov chain.

All data analysis was conducted in R (R Core Team 2016). Our SMC algorithms are available in an R
package, which can be obtained from the first author. Batch MCMC was performed using the R package rstan
(Stan Development Team 2016). The online MFVB algorithms of Luts et al. (2014) where run using code
provided by the authors.

5.1 Synthetic Data
5.1.1 Simple Logistic Model

We begin with a simple logistic regression example. Our aim here is to highlight a possible defiency in the
MFVB solution presented in Luts et al. (2014). We generate data from the model

x ∼ Unif(0, 1), Y | x ∼ Bernoulli(logit−1(β0 + β1x)),
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Algorithm 2 Gaussian additive model SMC algorithm
Initialize: Inputs P, τ, tw , tv , σ 2

β , Aε , Au

for p = 1, . . . , P do

θp ← πtw (θ| rest); σ 2
j ,p ← πtw (σ 2

j | rest); aj ,p ← πtw (aj |, rest); j = 1, . . . , J ;

σ 2
ε,p ← πtw (σ 2

ε | rest); aε,p ← πtw (aε |, rest); j = 1, . . . , J ; wp ← P−1

end for

for t = tw + 1, 2, . . . do

Reweight: wp ← wpp(yt | θp, σ 2
ε,p); p = 1, . . . , P

Normalize: w← w/
∑P

p=1 wp
if ESS(w) < τP then

Resample:

ν ′p ← Unif(0, 1); p = 1, . . . P

νp ← (p− 1 + ν ′p)/P ; p = 1, . . . P

ip ← i s.t. νp ∈
[∑i−1

p=1 wp,
∑i

p=1 wp
)
; p = 1, . . . P

{θp, wp} ← {θip , P−1}; p = 1, . . . P

end if

Move:

C← [CT : ct ]T ; y← (yT , yt )T

for p = 1, . . . , P do

θp ← N
{
(CTC + σ 2

ε,pΣ−1
p )−1CT y, σ 2

ε,p(CTC + σ 2
ε,pΣ−1

p )−1}

for j = 1, . . . , J do

aj ,p ← IG(1, 1/σ 2
j ,p + 1/A2

j )

σ 2
j ,p ← IG

{
(qj + 1)/2, 1

2u
T
j,puj ,p + 1/aj ,p

}

end for

aε,p ← IG(1, 1/σ 2
ε,p + 1/A2

ε )

σ 2
ε,p ← IG

{
(t + 1)/2, 1

2 (y− Cθp)T (y− Cθp) + 1/aε,p
}

end for

Validation:

if t = tw + tv then

Use visual diagnostics to compare current estimates from SMC with batch MCMC

if SMC not converging then increase P and/or tw and restart algorithm end if

end if

end for
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Algorithm 3 Generalized additive model SMC algorithm
Initialize: Inputs P, τ, tw , tv , ε, σ 2

β , Au

for p = 1, . . . , P do

θp ← πtw (θ| rest); σ 2
j ,p ← πtw (σ 2

j | rest); aj ,p ← πtw (aj |, rest); j = 1, . . . , J ; wp ← P−1

end for

for t = tw + 1, 2, . . . do

Reweight: As described in Section 4.3

Normalize: w← w/
∑P

p=1 wp
if ESS(w) < τP then

Resample: As described in Algorithm 2

end if

Move:

C← [CT : ct ]T ; y← (yT , yt )T ; µθ ←
∑P

p=1 wpθp; Σµ ←
∑P

p=1 wp(θp − µθ )(θp − µθ )T

for p = 1, . . . , P do

θ ′ ← N(µθ , εΣθ ); r ← p(θ ′| rest)φ(θp; µθ ,Σθ )/{p(θp| rest)φ(θ ′; µθ ,Σθ )}; u← Unif(0, 1)

if u < min(r, 1) then

θp ← θ ′

end if

for j = 1, . . . , J do

aj ,p ← IG(1, 1/σ 2
j ,p + 1/A2

j ); σ 2
j ,p ← IG

{
(qj + 1)/2, 1

2u
T
j,puj ,p + 1/aj ,p

}

end for

end for

Validation: As described in Algorithm 2

end for
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where we consider β ≡ 16.1 and β1 ≡ −19.05. For these values of β0 and β1, MFVB as implemented in Luts
et al. (2014) is inappropriate due to the high amount of posterior correlation between the parameters.

We use tw = 100 for both MFVB and SMC warm-up. We apply Algorithm 3 with P = 10000 and τ = 0.5
to obtain density estimates for β0 and β1 at each time step. We run batch MCMC for 2500 iterations with the
first 1000 iterations being used for warm-up.

Results for a representative simulated data set are shown in Figure 2, where we plot density estimates from
SMC, MFVB, and batch MCMC at sample sizes N = 600, 1100, 1600, 2100. As expected, we see that MFVB
struggles in this scenario. We also observe close agreement between SMC and batch MCMC.
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Figure 2: Density estimates for β0 (top row) and β1 (bottom row) for SMC, online MFVB, and batch MCMC at
various sample sizes. True values are shown as dashed vertical lines.

5.1.2 Gaussian Penalized Spline

In this example, we generate synthetic data as in Luts et al. (2014) to assess the performance of Algorithm 2.
The data are generated according to

x1 ∼ Bernoulli(1/2), x2, x3 ∼ Unif(0, 1), Y | x1, x2, x3 ∼ N(β1x1 + f2(x2) + f3(x3), σ 2
ε ),

where β1 ≡ 0.2, f1(x) = cos(4πx) + 2x , f2(x) = sin(2πx2), and σ 2
ε = 1.

Luts et al. (2014) already demonstrated that the mean field approximation was reasonable and that MFVB
performs well in this scenario. In applying Algorithm 2, we used a warm-up of size 500 and set P = 10000
and τ = 0.5.
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Figure 3 compares the results of running our SMC Algorithm 2 with online MFVB and batch MCMC at
sample sizes of N = 1000, 2000, 3000, and 4000 for a representative simulation. Good agreement is shown
between the estimates from batch MCMC and those from the MFVB and SMC methods.
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Figure 3: Comparison of SMC, online MFVB, and batch MCMC fits for simulated real-time Gaussian
semiparametric regression.

5.1.3 Poisson Nonparametric Regression

Finally, we consider the simulation scenario used in Luts and Wand (2015) to validate the use of Algorithm 3
on count data. Data are generated according to

x ∼ Unif(0, 1), Y | x ∼ Pois[exp{cos(4πx) + 2x}].

We use tw = 100 for warm-up and apply Algorithm 3 with P = 10000 and τ = 0.5. A comparison with
batch MCMC and MFVB fits at several time steps is displayed in Figure 4. We see close agreement between
SMC and MCMC with no signs of degeneracy in the SMC approximation at these sample sizes.
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Figure 4: Comparison of SMC, online MFVB, and batch MCMC fits for simulated real-time Poisson nonparametric
regression.

5.2 Fitbit R© Data

Wearable activity monitors, such as the Fitbit R©, have grown in popularity recently as their cost, size, and
accuracy has increased. This has lead to a wealth of data and research, with the hope that wearing these
monitors to assess physical activity will actually lead to improvements in the wearer’s health and fitness.
Whether this is actually the case remains an open area of research (Patel et al. 2015). The Fitbit R© is one of
the most popular consumer physical activity trackers available. It has been demonstrated to be an accurate and
reliable measure of physical activity (Diaz et al. 2015).

In this section we apply Algorithm 3 to data from a Fitbit R©. We envision a scenario where the wearer of
the activity tracker wants real-time modelling of their physical activity, with Bayesian inferences being made in
an online fashion on their wearable device. Thus, we have a limited computational budget and batch MCMC at
each time interval is not a possibility.

The data come from a single Fitbit R© reporting the number of steps the wearer has taken in five-minute
intervals. The average number of steps for each day of the week is shown in Figure 5. The data set is included
in the R package that implements our algorithms.

As a proof of principal, we consider a two-predictor model with a goal of future work being to refine the
model after consultation with health sciences experts. We consider the Poisson log-linear model

stepsij ∼ Pois
[
exp{nightij + f (time.of.dayij )}

]
, (3)

where stepsij is the step count reading on day i at five-minute interval j , nightij is an indicator variable for time
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Figure 5: Average steps for each day of week for Fitbit R© data.

of day being between 9PM and 6AM, and time.of.dayij is the minute of the day standardized to have mean zero
and variance one.

For the batch MCMC, we run the No-U-Turn Sampler for 5000 iterations, with a warm-up of size 2000.
As before, we use P = 10000 and τ = 0.5 in Algorithm 3. We warm-up using one week of data and run the
algorithm on the second week of data.

Figure 6 plots the estimate f̂ of f in (3), using both Algorithm 3, online MFVB, and batch MCMC at 12
hour intervals during the second week of using the activity tracker.

Agreement between SMC and batch MCMC is generally good. We see some minor evidence of degeneracy
as their is an increase in disagreement between the fits on later days. The disagreement is mostly at the start
and end of the time interval where penalized splines are known to have more bias. We also point out that given
the cyclic nature of the covariate, it would be more appropriate to use a cyclic penalized spline (e.g., Wood
2006) as opposed to the O’Sullivan splines we implemented for this work. We see greater disagreement between
online MFVB and batch MCMC, and note that disagreement also increases as the time window increases. It is
especially significant in the early AM when the subject is most likely sleeping.

6 Conclusion

We have shown that SMC methods may be applied to fit semiparametric regression models in a streaming data
setting. We demonstrated on synthetic data that SMC methods can be applied with a high degree of accuracy
for semiparametric models with Gaussian, binary, and count responses. We see SMC methods as offering a
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Figure 6: Comparison of SMC, online MFVB, and batch MCMC fits for Fitbit R© data.

middle ground in the trade-off between speed/accuracy of MFVB and batch MCMC.
Future work will explore developing a more realistic model for the step count data to include additional

covariates, account for overdispersion in the counts, and experiment with other types of splines that would be
more appropriate for the spiky, cyclic nature of the data. Including additional covariates and larger datasets
motivate further research effort to reduce the computational budget. This research provides an important proof of
concept toward this goal.
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