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The focus of this dissertation is the introduction of the functional generalized

additive model (FGAM), a novel regression model for association studies between

a scalar response and a functional predictor. The FGAM extends the commonly

used functional linear model (FLM), offering greater flexibility while still being

simple to interpret and easy to estimate. The link-transformed mean response is

modelled as the integral with respect to t of F{X(t), t} where F (·, ·) is an unknown,

bivariate regression function and X(t) is a functional covariate. Compare this with

the FLM which has F{X(t), t} = β(t)X(t), where β(t) is an unknown coefficient

function. Rather than having an additive model in some projection of the data,

the model incorporates the functional predictor directly and thus can be viewed

as the natural functional extension of generalized additive models.

The first part of the dissertation shows how to estimate F (·, ·) using tensor-

product B-splines with roughness penalties. Fast, stable methods are used to fit

the FGAM and I discuss how approximate confidence bands can be constructed

for the true regression surface. Additional functional predictors can be included

with little added difficulty. The performance of the estimation procedure and the

confidence bands is evaluated using simulated data and I compare FGAM’s predic-

tive performance with other competing scalar-on-function regression alternatives,

including the popular functional linear model. I illustrate the usefulness of the

approach through an application to brain tractography, where X(t) is a signal



from diffusion tensor imaging at position t, along a tract in the brain. In one

example, the response is disease-status (case or control) and in a second example,

it is the score on a cognitive test. R code for performing estimation, plotting, and

prediction for the FGAM is explained and is available in the package refund on

CRAN.

Frequently in practise, only incomplete, noisy versions of the functions one

wishes to analyze are observed. The estimation procedure used in the first part

of the thesis requires that the functional predictors be noiselessly observed on a

regular grid. In the second part of the dissertation, I restrict attention to the

identity link-Gaussian error case and develop a Bayesian version of FGAM. This

approach allows for the functional covariates to be sparsely observed and mea-

sured with error. I consider both Monte Carlo and variational Bayes methods for

jointly fitting the FGAM with sparsely observed covariates and recovering the true

functional predictors. Due to the complicated form of the model posterior distri-

bution and full conditional distributions, standard Monte Carlo and variational

Bayes algorithms cannot be used. As such, the work should be of independent

interest to applied Bayesian statisticians. The numerical studies demonstrate the

benefits of the proposed algorithms over a two-step approach of first recovering

the complete trajectories using standard techniques and then fitting a functional

regression model. In a real data analysis, the methods are applied to forecasting

closing price for items being auctioned on the online auction website eBay.

Finally, in the third part of the thesis I propose and compare several different

procedures for testing when a scalar on function regression relationship is truly

nonlinear. By using an alternative parametrization for the FGAM as a mixed

model, it is shown how the functional linear model can be represented as a simple

mixed model nested within the FGAM. Using this representation, I then consider



two types of tests, those based on restricted likelihood ratio tests for zero variance

components in mixed models and those involving Bayes factors where we use gen-

eralizations of g-priors as priors for the random effects coefficients. The methods

are general and can also be applied to testing for interactions in a multivariate

additive model or for testing for no effect in the functional linear model. The per-

formance of the proposed tests is assessed on simulated data and in an application

to measuring diesel truck emissions, where strong evidence of nonlinearities in the

relationship between the functional predictor and the response are found.
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CHAPTER 1

INTRODUCTION

Firstly, wow! You are actually reading my thesis. Secondly, forgive me for my

Canadian English; a bastardized version of proper, British English. It is much less

bastardized than American English, but it’s still bastardized. Let’s get started.

1.1 A Brief Overview of Functional Data Analysis

The need for functional data analysis (FDA) tools has arisen as data sets have

continued to balloon in size with advances in technology. In several fields, sampling

can be done on such a fine grid that it makes sense to view each sample as being

observed on a continuum and coming from a smooth function. The continuum

is often, but not always, time; and the functions are often, but need not be,

univariate. FDA methods have been successfully applied in a wide array of fields

such as chemometrics, econometrics, and biomechanics. In this dissertation, we

will demonstrate applications to brain imaging, online auctions, and automobile

exhaust emissions.

First introduced in the seminal paper by Ramsay and Dalzell [89], FDA is by

now a fairly mature, but still rapidly developing field. There currently are many

applied and theoretical monographs available; including Ferraty [27], Ferraty and

Romain [28], Ferraty and Vieu [29], Horváth and Kokoszka [44], Ramsay and Silver-

man [90], Ramsay et al. [92], Shi and Choi [106], Zhang [136], and the standard introduc-

tory reference Ramsay and Silverman [91]. There have been several special journal

editions on FDA and in R there are at least three software packages with a suite
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of FDA methods available: fda (Ramsay et al. 93), refund (Crainiceanu et al. 16),

and fda.usc (Febrero-Bande and Oviedo de la Fuente 25).

Paramount to any FDA, is that the underlying functions are smooth, i.e. that

one or more of the functions’ derivatives exist. Smoothness of the functions is the

key property that makes functional data methods advantageous over treating the

data as discrete and using tools from multivariate statistics. Many of the methods

of multivariate statistics have FDA counterparts. One of the most popular, which

we will need in Chapter 3, is the extension of principal components analysis to

functional data, called FPCA. Typically, FPCA is one of the first methods consid-

ered in an FDA in order to understand the underlying modes of variation present

in the data. This is done by analyzing the eigenvalues and eigenfunctions of the

functions’ covariance surface.

Another useful preliminary tool for FDA is registration, which enables the

sampled functions to be compared more easily. This is achieved by aligning the

observed curves to remove the effect of any uninformative horizontal (phase) shifts

from function to function or aligning based on some shared characteristic, such as

minima or maxima or points where the functions cross zero. One of the main uses of

FDA is for the study of derivatives, differential equations, and dynamical systems.

The FDA tool that will be the focus of this dissertation is that of using the sampled

functions in a regression model in order to understand the relationship between the

functions and some other variable(s) of interest. Methods are available for when

either one or both of the response and predictor in the model are functions. We

will concentrate on the case of predicting a scalar response when the predictors

are functions.

We will introduce this topic in more detail after a short detour to multivariate

2



data to discuss the key modelling tool used throughout the thesis, penalized splines.

1.2 Semiparametric Regression and Penalized Splines

Parametric models such as the multiple linear regression model, typically make

very strong assumptions about the underlying data generation mechanism, assum-

ing it depends only on a small number of parameters. Nonparametric models, on

the other hand, make little to no assumptions about the underlying data generation

and depend on an infinite number of parameters. As such, nonparametric models

can be useful because they allow for capturing additional, more complicated struc-

ture that parametric models cannot. Practically, we must index a nonparametric

model by some large, but finite set of parameters. Semiparametric models are an

attempt to provide the best of both worlds, consisting of models that have both

parametric and nonparametric components.

Additive models are one of the most popular nonparametric tools for describing

how a response variable depends on one or more covariates. Standard, early refer-

ences are Buja et al. [8] and Hastie and Tibshirani [42]. Additive models allow the

relationship between the response and a covariate to be modelled by an unspecified

smooth function, but traditionally make the strong assumption that the covariates

do not interact to avoid unacceptably large variance in estimation. In general, ad-

ditive models offer increased flexibility and potentially lower estimation bias than

linear models while having less variance in estimation and being less susceptible

to the curse of dimensionality than models that make no additivity assumptions.

The goal of this dissertation is to develop a model that provides greater flexibility

than the linear regression model for functional data (introduced shortly), while

3



still being simple to estimate and interpret.

The unspecified regression functions mentioned above are represented using

a linear combination of basis functions. B-splines will be our basis functions of

choice throughout the dissertation because of their popularity and computational

efficiency. A key idea is that we can take tensor products of marginal bases to

represent functions of higher order in a simple manner.

Central to any nonparametric method is a tuning parameter (usually called a

smoothing parameter) and penalty which control the complexity and smoothness

of the estimated regression functions. The tuning parameter must be estimated

from the data and adequate choice of tuning parameter is essential for the success

of the method. Not smoothing enough results in overfitting, and estimates that

have low bias but high variance that will provide poor predictions for new data.

Smoothing too much results in models that fail to explain key features of the data.

By penalized splines, we mean that the regression function is represented using

low rank spline bases subject to a quadratic roughness penalty. Great introductions

to penalized splines can be found in Ruppert et al. [99] and Wood [126]. In this work,

we will frequently make use of the P-splines of Eilers and Marx [20], which we will

describe in detail later. The roughness penalty is often, but not always, the squared

second derivative of the function. For P-splines, the penalties are differences (of

a prespecified order) of adjacent B-splines. Once the type of basis and penalty

are specified, the user must also specify/estimate the number of basis functions

used to represent the function, the location of the knots (usually taken to just be

equally spaced along the domain of the function), the order of the spline, the order

of the penalty, and finally the value of the smoothing parameter that multiplies

the penalty. As mentioned, the smoothing parameter is the key component of the

4



model controlling function shape (assuming one uses an adequate number of spline

functions).

One concept extremely important for this dissertation, is that penalized spline

models may be represented as mixed models, which allows for parameters to be

estimated using techniques for those models. We will make use of a different

mixed model representation in each of the three main chapters of this thesis. In

Chapter 2, we only mention in passing that an alternative estimation procedure

using mixed models is available, but in Chapters 3 and 4, the representations are

fundamental to the methods used and we discuss them in detail. In Chapter 3,

the mixed model representation used gives rise to a proper prior and results in a

proper full conditional for the regression coefficients in a Bayesian version of our

model. In Chapter 4, the third mixed model representation we consider allows

us to explicitly show how the canonical model for functional regression is nested

within our model providing a means for hypothesis tests regarding which model

better fits the data.

1.3 The Scalar on Function Regression Landscape

This dissertation studies regression with a functional predictor and a scalar re-

sponse. Suppose one observes data {(Xi(t), Yi) : t ∈ T } for i = 1, . . . , N , where

Xi is a real-valued, continuous, square-integrable, random curve on the compact

interval T and Yi is a scalar. It is usually assumed that the predictor, X(·), is

observed at a dense grid of points. The problem addressed here is estimation of

E(Yi|Xi), which is assumed independent of i. The most commonly used regres-

sion model in functional data analysis is the functional linear model (Ramsay and
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Dalzell 89), henceforth the FLM, given by

E(Yi|Xi) = θ0 +
∫
T
β(t)Xi(t) dt, (1.1)

where β(·) is the functional coefficient with β(t) describing the effect on the re-

sponse of the functional predictor at time t. We can see that for any fixed t, the

effect ofX(t) on Y is linear. This model has been the subject of far too many papers

to list. Ramsay and Silverman [91] provides a nice introduction and uses penalized

splines. Extensions to generalized responses are available (e.g., James 46 , Müller

and Stadtmüller 75).

Given how often a linear model is not complex enough to model the true re-

gression relationship for multivariate data, it would seem that there would also be

functional data sets for which the FLM is not a flexible enough model, and there

have been occasional attempts to propose nonlinear models for functional regres-

sion. One model that has seen a fair amount of attention is the fully nonparametric

kernel estimator of Ferraty and Vieu [29]. This model is more of a black box, some-

times useful for predictions, but not for providing any insights into how exactly

the functional predictor affects the response. Several authors have considered ad-

ditive models that use linear functionals of the predictor curves as covariates, e.g.

E(Yi|Xi) = β0+f{〈β(t)Xi(t)〉} = β0+f{
∫
β(t)Xi(t)dt}, for unknown β0, f(·), and

β(t). Two such examples are Müller and Yao [76] and James and Silverman [47]. The

former approach regresses on a finite number of functional principal components

scores and the latter approach searches for linear functionals using projection pur-

suit. Both models rely strongly on the linear directions they estimate; for ease of in-

terpretation, we desire a model that incorporates the functional predictors directly.

A model that is additive in the principal component scores is not additive in X(t)

itself, and vice versa. We have the same complaints about Ait-Saïdi et al. [1], Chen

et al. [12], Febrero-Bande et al. [26]. A less general model is the functional quadratic
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regression model of Yao and Müller [132], which adds in the following term to the

FLM:
∫
T
∫
T β(s, t)X(s)X(t)dsdt. Two noteworthy, though not direct competitors

for the model we consider are Guillas and Lai [40], which examines the case when

X is a bivariate function so that E(Yi|Xi) = β0 +
∫ ∫

β(s, t)X(s, t)dsdt; and Li

et al. [60], which allows for interaction between a scalar and functional covariate

though a single index.

1.4 Contributions of This Dissertation

The model that we introduce and that will be the focus of the thesis is

g{E(Yi|Xi)} = θ0 +
∫
T
F{Xi(t), t} dt, (1.2)

where θ0 is the intercept, g is a called a link function, and F is an unspecified

smooth function to be estimated. We call model (1.2) the functional generalized

additive model (henceforth abbreviate as FGAM). As a special case, when g(x) = x

and F (x, t) = β(t)Xi(t), we obtain the FLM (1.1).

Our model allows for greater flexibility in representing the response-predictor

relationship, as it does not make the strong assumption of linearity between the

functional predictor and the functional parameter. To overcome the curse of di-

mensionality, we will perform smoothing in both the x and t components of F (·, ·).

It will be shown that our model is the natural extension of generalized additive

models (GAMs) to functional data.

The first core chapter of the dissertation shows how to estimate F (·, ·) using

penalized splines. We review tensor-product P-splines and show how they can

be used to estimate FGAM using very fast and stable methods, and also discuss
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the implementation of FGAM in the popular statistics programming language R.

Formulas for approximate confidence bands for the true regression surface are

given and we discuss how additional functional predictors can be incorporated

in the model. We compare FGAM’s predictive performance with several other

competing scalar-on-function regression models, including the FLM on simulated

and real data sets and evaluate the coverage properties of the proposed confidence

bands. We apply FGAM to a study in diffusion tensor imaging, where X(t) is a

signal from the one-dimensional image at position t, along a tract in the brain.

In order to extend FGAM to the common case where the functional predictors

are sparsely observed and measured with error, we consider both Monte Carlo and

variational Bayes (VB) methods for fitting the FGAM with sparsely observed co-

variates and recovering the true functional predictors simultaneously. Variational

Bayes (VB) refers to a specific variational approximation used for Bayesian infer-

ence that relies on the assumption that a posterior density of interest factors into

a product form over certain groups of model parameters. Though they are com-

monly used in computer science, the application of variational approximations in

statistics is relatively new; Ormerod and Wand [80] provides an overview. When the

amount of posterior dependence is small, it has been demonstrated in a number of

applications that there can be little loss of accuracy and very large improvements

in computation time over MCMC methods. Applications of VB to regression prob-

lems with missing data can be found in Faes et al. [22] and Goldsmith et al. [34], the

latter of which considered the FLM.

Due to nonconjugacies in our model specification, we cannot use a vanilla Gibbs

sampler or easily derive a simple VB algorithm. As such, the algorithms we de-

velop are new and should be of independent interest. Our numerical experiments
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show the difficulties that can occur if one applies standard tools for recovering

sparse curves and then attempts to run a functional regression as if the curves

were fully observed, and demonstrates the superiority of our algorithms. In a real

data analysis, the methods are applied to forecasting closing price for items being

auctioned on the online auction website eBay.

Finally, in the third part of the thesis we explore hypothesis tests for formally

testing an FGAM fit for linearity. Through an alternative parametrization, we nest

the FLM in the FGAM in a simple way that allows us to recast our testing problem

as one of testing for zero variance components in a mixed model. We consider both

restricted likelihood ratio tests and tests involving Bayes factors and g-priors. The

use of these types of tests for checking for interactions in nonparametric models

with bivariate functions has also not been considered before. The methods can also

be used for testing for no effect in the functional linear model. The performance of

the proposed tests is assessed on simulated data and in an application to measuring

diesel truck emissions, where strong evidence of nonlinear effects in the data are

found.
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CHAPTER 2

DENSE COVARIATES

2.1 Preliminaries

2.1.1 Some Intuition for FGAM

To build intuition for the model, we start off immediately with an example. The

application we consider in this chapter is diffusion tensor imaging (DTI), which

we analyze in detail in Section 2.4. The dataset contains closely spaced evalua-

tions of measures of neural functioning on multiple tracts in the brain for patients

with multiple sclerosis and healthy controls. We will use these measurements as

regressors and predict multiple health outcomes to gain a better understanding

of how the disease is related to DTI signals. Our model is able to quantify the

effect that the functional predictor has on the response at each position along the

tract, something that a model such as the functional additive model of Müller

and Yao [76] is unable to do, since it uses principal component scores and hence

loses information about tract location. Another potential application of FGAM is

to study how a risk factor trajectory such as body mass index or systolic blood

pressure is related to a health outcome such as developing hypertension (e.g., see

the study in Li et al. 59). Our FGAM can locate times of life when the risk factor

has its greatest effect; this is not possible if principal component scores are used

in a GAM.

To see how our model can aid in uncovering the underlying structure of a func-

tional regression problem consider Figure 2.1, which shows an estimated surface,
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Figure 2.1: Estimated surface F̂ (x, t) and two predictor curves for the DTI dataset.
The solid curve belongs to a control and the dashed curve belongs to an MS patient.

F̂ (·, ·), for one of the functional predictors in the DTI dataset when the response

is disease status (= 1 if the subject has the disease). Overlaid on the surface are

the observed functional predictor values for two subjects. The estimated surface

is non-linear in x, so an FLM based on the predictors may be inadequate for this

problem. We see that for the most part, the solid curve, belonging to a control

subject, takes smaller values on the surface than the dashed curve, which belongs

to a MS patient, does; thus, the subject with MS will have a higher fitted value

and is more likely to be classified as having the disease. It will be shown for this

dataset that the added generality of our approach leads to improved predictive

accuracy over the FLM.

Additional insight can be gained by considering multivariate regression us-

ing the raw, discrete data. The FLM can be thought of as multiple linear re-

gression with an infinite number of predictors, as we now explain. Let tij = tj
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for 1, . . . , J denote the observation times for the curves Xi(·); then the usual

multiple linear regression model E(Yi|Xi(t1), . . . , Xi(tJ)) = β0 + ∑J
i=1 βjXi(tj) =

β0 + J−1∑J
i=1 β

′
jXi(tj) can be viewed as a Riemann sum approximation that con-

verges to (1.1) as J →∞.

Now consider an additive model of the form E{Yi|Xi(t1), . . . , Xi(tJ)} = θ0 +∑J
j=1 fj{Xi(tj)}, where the fj’s are unspecified smooth functions. The basic idea

is to rewrite the model as E{Yi|Xi(t1), . . . , Xi(tJ)} = θ0 + J−1∑J
j=1 F{Xi(tj), tj},

and then let J → ∞ and add a link function. The model obtained is our model

(1.2). Hence, we believe are model to be the natural extension of additive models

to functional data.

2.1.2 Parametrization of the Regression Surface

In this section, we introduce our representation for F (·, ·). It is assumed that

T = [0, 1] and that X(·) takes values in a bounded interval which, without loss

of generality, can be taken as [0, 1]. The latter assumption is guaranteed by the

proposed transformation of the functional predictors discussed in Section 2.1.4.

We will model F (·, ·) using tensor products of B-splines. Splines are commonly

used for estimation of functional linear models. For example, smoothing splines

are used by Crambes et al. [18] and Yuan and Cai [133] and penalized splines are

considered by Cardot et al. [10] and Goldsmith et al. [32]. These papers impose

smoothness using a penalty on the integrated, squared second derivative of the

coefficient function. Instead, we use the popular P-splines of Eilers and Marx [20],

for reasons we explain shortly. P-splines use low rank B-splines bases with equally-

spaced knots and a simple difference penalty on adjacent coefficients to control
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smoothness.

Note that there will be some differences from standard fitting of tensor product

P-splines. Namely, our design matrix is obtained from integrating products of B-

splines evaluated at functional covariates. P-splines offer many computational

advantages. Fast and flexible software is available for estimating our model in the

R package refund (Crainiceanu et al. 16) which makes use of smoothing parameter

selection algorithms available in mgcv (Wood 127). Additional scalar or functional

predictors can be incorporated in a simple way and will not require backfitting.

Both types of predictors can be included in either a linear or an additive fashion.

Though we use P-splines, our estimation procedure can incorporate other bases

and penalties for some or all of the covariates. It will be shown that the fitted

values for the FGAM are linear in the tensor product B-spline coefficients so we

actually have a penalized generalized linear model (GLM). We use

A bivariate spline model is used for F (·, ·) so that

F (x, t) =
Kx∑
j=1

Kt∑
k=1

θj,kB
X
j (x)BT

k (t) (2.1)

where {BX
j (x) : j = 1, . . . , Kx} and {BT

k (x) : k = 1, . . . , Kt} are spline bases on

[0, 1]. We will use B-spline bases. It follows from combining (1.2) and (2.1), that

we obtain the GLM

g{E(Yi|Xi)} = θ0 +
∫
T
F{Xi(t), t}dt = θ0 +

Kx∑
j=1

Kt∑
k=1

θj,kZj,k(i), (2.2)

where Zj,k(i) =
∫
T B

X
j {Xi(t)}BT

k (t)dt. Each Zj,k(i) can be approximated by, say,

Simpson’s rule. Associated with each marginal basis are parameters, dx and dt,

for the x and t bases, respectively, which specify the degree of differencing for the

penalties for each axis. The penalties will be discussed in detail in Section 2.2.
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2.1.3 Identifiability Constraints

Notice that for F ∗(x, t) = F (x, t) + g(t), where
∫
T g(t) dt = 0 we have∫

T F
∗(x, t) dt =

∫
T F (x, t) dt and thus we must impose constraints to ensure identi-

fiability. If no constraints were used, the function g(t) would be chosen to maximize

the penalized log-likelihood given in Section 3.2 and g(t) would be regularized by

the difference penalties we use. The penalties alone are not enough to ensure iden-

tifiability, however. One possibility is to simply use a ridge penalty as in Marx

and Eilers [67]. For our difference penalties, functions of t in the null space of the

penalty are polynomials of degree dt−1. Therefore dt−1 constraints are necessary

for identifiability.

The constraint explicitly used by the fitting procedure is∑N
i=1

∫
T F (Xi(t), t) dt =

0. Any additional constraint necessary to ensure identifiability are determined by

checking for numerical rank deficiency during fitting. The details are explained in

the next section.

For fixed smoothing parameters, different identifiability constraints yield the

same predictions and the same estimated F̂ (·, ·) up to a constant, though different

estimates for the variance of the estimated surface (and therefore different confi-

dence bands) will be obtained. The GCV score is also invariant to the constraints

used. It is possible to switch to an alternative set of constraints after fitting our

model using a pivoted QR decomposition along the lines of Wood et al. [129].
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2.1.4 Transformation of the Predictors

Depending on the number of B-splines used for each axis, there could be a partic-

ular tensor product of B-splines that has no observed data on its support. This

would lead to Zj,k(i) = 0 for all i for some j, k pair, resulting in the design ma-

trix containing a column of zeros. One remedy for this is to transform X(t) by

Gt(x) := P{X(t) < x} for each value of t. Our model becomes

g{E(Yi|Xi)} = θ0+
∫
T
F [Gt{Xi(t)}, t]dt = θ0+

Kx∑
j=1

Kt∑
k=1

θj,k

∫
T
BG
j [Gt{Xi(t)}]BT

k (t)dt,

(2.3)

where BG(·) is a new B-spline basis with support on [0, 1]. Loosely, the data are

being "stretched out" to fill the entire space that the grid of B-splines will cover.

For any t on the grid where observations are taken, the transformed points will

lie uniformly between [0, 1]. Though the estimation procedure is the same in both

cases, clearly, F (·, ·) in (2.3) will have a different estimate from F (·, ·) in (1.2).

We estimate Gt(·) using the empirical cdf Ĝt(x) = n−1
n∑
i=1

I{Xi(t) < x}, where

I{A} = 1 if condition A is true and I{A} = 0 otherwise. Once the Zj,k(i)’s

have been estimated, the fitting procedure is analogous to the case when the cdf

transformation is not used. Another advantage of using this approach is that

it does not require any assumptions about the range of the predictors. Besides

the computational advantages, this transformation retains the benefit of ease of

interpretation. In fact, F (p, t) is the effect of X(t) being at its pth quantile.

Another potentially useful transformation we do not pursue in this paper is

Ĥt(x) = n−1∑n
i=1 Φ

[
x−Xi(t)

ht

]
, where Φ(·) denotes the standard normal cdf and ht is

a user chosen bandwith that can depend on t. The advantage of this transformation

over the empirical cdf transformation is that future observations falling below

[above] the minimum [maximum] value of the training data at a particular t are
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not all assigned the value zero [one].

Due to the penalization used later when fitting the FGAM, parameter estimates

can still be obtained when the design matrix has a column of zeros. However, we

expect our transformation will improve both the numerical and statistical stability

of our estimates. Note also that if there exists any pointwise transformation, Ht(·),

such that g{E(Yi|Xi)} =
∫
T β(t)Ht{Xi(t)} dt, then the FGAM will still hold; and

similarly, for any model of the form (2.3) for a general transformation Gt(·). The

FLM will hold only if Xi(t) is transformed by Ht, but Ht is generally not known.

Thus, the FGAM is invariant to transformations of the predictor, unlike the FLM.

2.2 Estimation

In this section, we present the estimation procedure for F (·, ·). First, we review

P-spline type penalties and discuss penalized GLMs and the selection of smoothing

parameters. We then describe the estimated surface and discuss construction of

pointwise confidence bands for these estimates. We conclude the section by showing

how to include additional functional and non-functional predictors in the model.

2.2.1 Roughness Penalties

Smoothing can be achieved by using row and column penalties as in Marx

and Eilers [67]. The row penalty is λ1
∑Kx
j=dx+1(∆dx

j θj,k)2, where ∆dx
j θj,k is the

dxth difference of the sequence θj−dx,k, . . . , θj,k (k held fixed). The column

penalty is λ2
∑Kt
k=dt+1(∆dt

k θj,k)2, where ∆dt
k θj,k is the dtth difference of the sequence

θj,k−dt , . . . , θj,k (j held fixed). Selection of the smoothing parameters λ1 and λ2 is
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discussed in the next section.

Proceeding similarly to Marx and Eilers [68], we first place the Zj,k(i)’s in a

matrix as follows. Let Zi = vec {Z(i)} be the KxKt-vector obtained by stacking

the columns of Z(i) = [Zj,k(i)]k=1,...,Kt
j=1,...,Kx , and let Z = [Z1 Z2 · · ·ZN ]T . The penalty

matrix is given by

P = λ1PT1 P1 + λ2PT2 P2, (2.4)

with P1 = Dx ⊗ IKt , P2 = IKx ⊗ Dt where Ip is the p × p identity matrix, ⊗ is

the Kronecker product, and Dx and Dt are matrix representations of the row and

column difference penalties with dimension (Kx − dx) × Kx and (Kt − dt) × Kt,

respectively. The parameter, d, denotes the prespecified degree of differencing.

Note that additional penalties such as an overall ridge penalty could also be incor-

porated.

To incorporate the intercept, a leading column of ones must be added to Z and

a leading column of zeros must be added to P1 and P2. Throughout the rest of

the paper, this has been done unless otherwise indicated. When we do not wish to

consider the intercept, M[−i,−j] will denote the matrix M with its ith row and jth

column removed and v[−i] will denote the vector v excluding its ith entry.

2.2.2 Penalized GLMs and Smoothing Parameter Selection

Let the response vector, Y, be from an exponential family with density having the

form fY (y; ζ, φ) = ∏N
i=1 exp [{yiζi − b(ζi)}/a(φ) + c(yi, φ)] , where ζ is the canon-

ical parameter vector with components satisfying ζi = (b′)−1(µi) and φ is the

dispersion parameter. Parameterizing E(Y|X) as a standard GLM with known

link function, g(·), let η := Zθ and µ := E(Y|X), so that η = g(µ). It is
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easily seen that the constraint, ∑N
i=1

∫
T F{Xi(t), t} dt = 0, is enforced by requir-

ing 1TZ[,−1]θ = 0. Formally, this is done by obtaining the QR decomposition of

(1TZ[,−1])T = [Q1 Q2]

 r1

0KxKt−1

, where Q2 has dimension KxKt × (KxKt − 1).

The constrained optimization problem is then replaced by an unconstrained opti-

mization (outlined below) over θq, where θq is such that θ = Q2θq. For notational

simplicity, for any matrix M, define M̃ = MQ2.

The penalized log-likelihood to be maximized is

l(θq;λ1, λ2) =
N∑
i=1

log{fY (yi; ζi, φ)} − λ1||P̃1θq||2 − λ2||P̃2θq||2. (2.5)

The coefficients are estimated using penalized iteratively re-weighted least squares

(P-IRLS). Specifically, at the (m+ 1)th iteration we take

θ̂q,m+1 =
(
Z̃TŴmZ̃ + λ1P̃T1 P̃1 + λ2P̃T2 P̃2

)−1
Z̃TŴmûm, (2.6)

where ûm is the current estimate of the adjusted dependent variable vector, u, and

Ŵm is the current estimate of the diagonal weight matrix, W. The components

of u are given by ui = ηi + (yi − µi)g′(µi). The ith diagonal element of W is

wii = 1/{V (µi)[g′(µi)]2}, with V (µi) = b′′(ζi). To initialize the algorithm, use

µ0 = Y and η0 = g(Y), adjusting yi if necessary to avoid ηi =∞.

To efficiently construct (2.6) and to detect rank deficiency, the following pro-

cedure is used. First, use the QR-decomposition to form W1/2Z̃ = QR where Q

is orthogonal, R is upper triangular, and W1/2 = diag(w1/2
11 , . . . , w

1/2
NN). Next, use

the Choleski decomposition to obtain QT
2 PQ2 = LTL. Pivoting should be used

here because P is positive semi-definite instead of positive definite. Now, from

a singular value decomposition form [RT LT ]T = UDVT , where U and V are or-

thogonal and D is a diagonal matrix containing the singular values. At this point,

we ensure identifiability by removing the columns and rows of D and the columns
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of U and V corresponding to singular values that are less than the square root

of the machine precision times the largest singular value (Wood 126 , p. 183). It

then follows that (2.6) can be obtained from θ̂q,m+1 = VD−1UT
1 QTW1/2ûm, where

U1 is the sub-matrix of U satisfying R = U1DVT . At the final iteration, say M ,

our solution for θ is given by θ̂ = Q2θ̂q,M and it can be shown that this satisfies

1TZ[,−1]θ̂ = 0 as required (Wood 126 , Sec. 1.8.1).

Generalized cross validation (GCV) can be used to choose the smoothing pa-

rameters; see Wood [124], Sec 4.5.4 for justification of its use for non-identity link

GAMs. The GCV score for λ1 and λ2 is given by

GCV(λ1, λ2) = nD(Y; µ̂ : λ1, λ2)
{n− γtr(H)}2 , (2.7)

where H is known as the influence matrix and is related to the fitted values by

µ̂ := g−1(Zθ̂M) = g−1(HuM) and D(Y; µ̂ : λ1, λ2) denotes the model deviance.

The model deviance is defined to be twice the difference between the log-likelihoods

of the saturated model, which has one parameter for each observation, and the

given model. Formulas for the deviance for some common GLMs are given in

McCullagh and Nelder [69], Sec. 2.3; for example, for an identity link GLM,D(Y; µ̂ :

λ1, λ2) = ||Y−HY||2. The constant γ ≥ 1 is usually chosen to take values between

1.2 and 1.4 to combat the tendency of GCV to undersmooth. For additional

safeguards against undersmoothing, lower bounds could also be placed on the

smoothing parameters.

A choice must be made on the order in which the P-IRLS and the smoothing pa-

rameter selection iterations are performed. For what is termed outer iteration, for

each pair of smoothing parameters considered, a GAM is estimated using P-IRLS

until convergence. The other possibility, known as performance iteration, is to op-

timize the smoothing parameters at each iteration of the P-IRLS algorithm. The
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latter approach can be faster than outer iteration; however, it is more susceptible

to convergence problems in the presence of multicollinearity (Wood 126 , Ch. 4).

Our model can conveniently be fit in R using the mgcv package (Wood 124,128).

The details of how this is done are discussed in Section 2.2.6. We use outer iteration

and Newton’s method for minimizing the GCV score, the package defaults. Using

this package also allows for many possible extensions (e.g. mixed effects terms,

formal model selection, alternative estimation procedures, etc.) beyond the scope

of the current paper. Our code is implemented in the R package refund.

2.2.3 Estimated Surface

For a given θ̂, we can evaluate the estimated surface at any grid of points in its

domain. Let X be an arbitrary column vector of length n1 taking values in the

range of X(·) and T be the observation times or any vector of length n2 taking

values in [0, 1]. We let F̂ denote the estimated surface evaluated on the mesh

defined by X and T. To obtain F̂, let Bx be the n1n2 × Kx matrix of x-axis B-

splines evaluated at X ⊗ 1n2 , i.e., Bx =
[
BX

1 (X⊗ 1n2) · · ·BX
Kx(X⊗ 1n2)

]
, where

1n denotes a column vector of length n. Similarly, define Bt as the n1n2 × Kt

matrix of B-splines evaluated at 1n1 ⊗T. Next, define the n1n2 ×KxKt matrix

B = (Bx ⊗ 1TKt)� (1TKx ⊗ Bx), (2.8)

where � denotes element-wise matrix multiplication. The estimated surface is then

given by F̂ = Bθ̂[−1].
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2.2.4 Standard-Error Bands

For a response from any exponential family distribution, one simple way to con-

struct approximate, pointwise confidence bands for F̂ (x, t) conditional on the es-

timated smoothing parameters is to use a sandwich estimator in the same manner

as Hastie and Tibshirani [42], Section 6.8.2 and Marx and Eilers [67]. However, we

found through our simulation studies that these intervals do not have adequate

coverage for our model, a result also noticed for univariate GAMs in Wood [125].

This is because these intervals assume θ̂ is unbiased, which will not be the case

when θ 6= 0, due to the penalization involved in the estimation.

To overcome the bias in the parameter estimation, we use the Bayesian ap-

proach of Wahba [117]. Using the improper prior π(θ) ∝ exp
(
−θTPθ/2

)
, it can be

shown that

θ|ZTWu, λ1, λ2 ∼ N
(
[ZTWZ + P]−1ZTWu, [ZTWZ + P]−1φ

)
,

see e.g. Wood [126], Sec. 4.8. To estimate W, we use the estimated weight ma-

trix at the final P-IRLS iteration, ŴM . If it is necessary to estimate the dis-

persion parameter, φ, we use φ̂ = ∑n
i=1 V (µ̂i)−1(yi − µ̂i)2/[N − tr(H)]. Let-

ting V
θ̂

= (ZTŴMZ + P)−1φ̂ and recalling that the estimated surface is given

by F̂ = Bθ̂[−1], where B is defined in (2.8), the variance of F̂ is given by

var
[
F̂
]

= BV
θ̂[−1,−1]

BT . Taking F̂ ± 2
{
diag

(
var

[
F̂
])}1/2

gives approximate 95%

empirical Bayesian confidence bands for F.

These Bayesian intervals have a nice frequentist property "across the function":

in repeated random experiments with the same F , the observed coverage proba-

bilities averaged over the observation points will tend to be close to the nominal

coverage level. This property was borne out in several papers including Wahba [117]
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and Nychka [79] for the case of smoothing splines and Wood [125] for thin-plate re-

gression splines. Theoretical explanations for the property for generalized additive

models were recently provided in Marra and Wood [65]. It will be examined for the

FGAM through a simulation study in Section 2.3.2.

Depending on the application, a particular linear combination of the elements of

F̂ may be of interest. If we let c be a vector of the same length as F̂, then we can also

construct confidence bands of the form cT F̂± 2
{
cT
(
var

[
F̂
])

c
}1/2

. For example,

this could be used to determine approximately whether two observed curves have

significantly different effects on the response at a particular value of t. Under a null

hypothesis of H0 : θ = 0, θ̂ is unbiased and we can use the sandwich estimator for

the variance, Vf = V
θ̂
ZTŴMZV

θ̂
/φ̂, to conduct approximate hypothesis tests for

subsets of θ. For example, we can construct surfaces of approximate t-statistics by

scaling the estimated surface values by the reciprocal of their standard error (the

diagonal elements of Vf ).

For any pointwise transformation, Ht(·), of the predictor used (including

Ht(x) = x), it is of interest to test whether ∂2/∂h2F (h, t) = 0 for all h and t,

since this implies F{Ht(x), t} = β(t)Ht(x) for some function β(·). Since deriva-

tives of B-splines are simple to compute, an estimate of the second derivative of the

surface and the Bayesian confidence intervals for the second derivative are easily

obtained by replacing Bx in (2.8) with evaluations of the second derivatives of the

x-axis B-splines evaluated at the same points used for Bx. While we cannot use

our confidence bands for global inferences of this type, they do provide a rough

heuristic for the desired test. We consider more formal tests of this hypothesis in

Chapter 4. Marra and Wood [65] provides some evidence that coverage can be im-

proved slightly by including the intercept when calculating the proposed intervals
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(which slightly changes the interpretation of the intervals as well). In our numer-

ical studies, which we will discuss in detail shortly, we found that for FGAM the

Bayesian confidence bands that did not include the intercept provided adequate

coverage.

2.2.5 Multiple Predictors

Because of the modularity of penalized splines (Ruppert et al. 99), including mul-

tiple functional predictors as well as scalar predictors in the model is straight-

forward. Each additional functional predictor requires that two more smoothing

parameters be selected. We will outline the procedure for the case of two func-

tional covariates [say X1(·), X2(·)] and one scalar covariate (say W ). The model

is g{E(Yi|Xi,1, Xi,2,Wi)} = θ0 +
∫
T1
F1{Xi,1(t), t}dt+

∫
T2
F2{Xi,2(t), t}dt+F3(Wi),

and both X1(·) and X2(·) can be transformed by their empirical cdfs. Further

extensions are similar. As before, we use B-spline bases for both axes for both

functional predictors and now also for W . One must also choose degrees of dif-

ferencing to be used for each penalty. Let Z(1) and Z(2) denoted the matrices of

integrated tensor product B-splines for X1 and X2, respectively. Similarly, define

P(1) and P(2) [see (2.4)]. Let B(W ) be the matrix of W B-splines evaluated at the

observed values of W and let θ(W ) be the corresponding vector of B-spline coeffi-

cients forW . The penalty matrix for the smooth ofW is given by P(W ) = λwDT
wDw,

where Dw is the differencing matrix for W and λw is its smoothing parameter. For

identifiability, add the constraint 1TB(W )θ(W ) = 0 (the usual constraint for each

functional component in a standard additive model). We place the same constraint

on both functional predictors as in the previous section. Thus, we have three total
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constraints. Construct

Z =
[
1 B(W ) Z(1) Z(2)

]
, P = diag(0,P(W ),P(1),P(2)), and θ = (1,θ(W ),θ(1),θ(2))T .

To accommodate a linear effect of the covariate W , replace B(W ) in Z with the

observed values of W and replace P(W ) with zero in the above formula for P.

Note that it is also possible to have a linear effect for some functional predictors

and additive effects for others; e.g. a model of the form g{E(Yi|Xi)} = θ0+f(Wi)+∫
T1
β(t)X1i(t)dt +

∫
T2
F{X2i(t), t}dt. Using the roughness penalty approach for

estimating FLMs mentioned in Section 2.3.1, this can be implemented by making

straightforward changes to Z(1) and P(1) (see Ramsay and Silverman 91 , Ch. 15 for

details).

2.2.6 Fitting FGAM in R

Let X denote an N × J matrix of the observed measurements of the functional

predictor, where N is the number of sampled curves and J is the number of mea-

surements for each curve. Let T denote the N × J matrix of observation times

for the predictor curves. Let L denote the N × J matrix of quadrature weights to

use in our numerical integration of the surface F (x, t) and let y be the N -vector

of observed response values. The simplest FGAM (using all the function defaults)

and without an intercept is specified in refund (Crainiceanu et al. 16) by

fgam(y~af(X,xind=T)-1).

The interface is meant to conveniently extend the functions lm and glm in base R.

As in those functions, the -1 is included so that no intercept is fit; this is done here
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to simplify the notation. The function af in the model formula is used to specify

that the predictor X be fit in the FGAM form (1.2). See the documentation of

either function for how to specify the spline bases used, how smoothing parameters

are estimated, what penalties are used, etc. A functional predictor can also be fit

as an FLM by using the function lf in the formula specification. Also available are

functions vis.fgam for visualizing FGAM fits and predict.fgam for predictions

using an FGAM fit returned by a called to fgam.

The fgam function acts as a convenience wrapper for the gam, gamm, or bam

functions in package mgcv (Wood 126). To understand what is being done by that

package, an equivalent call (with slightly different defaults) to fit the above FGAM

in mgcv is

gam(y~te(X,T,by=L)-1),

where te specifies a tensor product smooth. The variables in the by argument

to te are treated as the covariates in a varying coefficient model. To make this

association more explicit, a generalized varying coefficient model has the form (e.g.,

see Wood 126 , p. 169).

g(µi) = θ0 + f1(xi1)xi2 + f2(xi3, xi4)xi5 + f3(xi6)xi7 + . . .

As a special case, consider

g(µi) = θ0 + f(xi1, xi2)xi3 + f(xi1, xi2)xi4 + . . .+ f(xi1, xi2)xi,J+2,

so each covariate, xi3, xi4, . . . , xi,J+2 has the same bivariate varying coefficient.

Now suppose we have xi1 ≡ Xi(tj), xi2 ≡ tij ≡ tj , xip ≡ lij ≡ lj; p = j + 2; j =

1, . . . , J where the lj’s are quadrature weights. Note that mgcv treats both variables
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t and l as if they depend on i = 1, . . . , N though they do not for the FGAM. We

now arrive at

g(µi) = θ0 +
J∑
j=1

f(xi1, xi2)xi,j+2 = θ0 +
J∑
j=1

f{Xi(tj), tj}lj ≈ θ0 +
∫
T
f{Xi(t), t} dt,

so mgcv is fitting the model

E(Yi|Xi) =
J∑
j=1

F (xij, tij)lij =
J∑
j=1

Kx∑
k=1

Kt∑
m=1

θkmB
X
k (xij)BT

m(tij)lij,

where as in the paper, BX
k (·) denotes the kth B-spline for the x-axis and Kx is the

dimension of the basis for X (with equivalent definitions for the t-axis).

The matrix BT which consists of J ×Kx blocks of size N ×Kt each is formed

in mgcv. The (i, j) entry in the (m,n) block of BT is given by BX
n (xim)BT

j (tim).

The design matrix used for the smooth is then the NJ ×KxKt matrix

D = diag[vec(L)]BT

The package enforces one constraint at this point because the row sums of the

by variable matrix are constant (L1 = 0). The constraint is 1TDθ = 0. How to

implement this constraint during fitting and every other detail of the estimation

procedure used by mgcv has already been discussed in this chapter.

The default smoothing method for a tensor product smooth in mgcv is cubic

regression splines, so the bs argument to te must be specified as ’ps’ for P-splines

to be used. The m argument to mgcv specifies both the order of the spline and

the order of the penalty. For P-splines, m can be specified as a list with length

equal to the number of marginal bases. The argument k is a vector specifying the

dimension of each marginal basis.

As an example, say we have an N -vector of responses y, the N × J matrix

of observed functional predictors X with observation times occurring at equally
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spaced points in [0, 1], and that wish to use the midpoint rule aka rectangle method

for approximating the integral. If we wish to use 10 cubic basis functions for the

x-axis, 15 4th order basis functions for the t-axis, a second order difference penalty

for the x-axis and a third order difference penalty for the t-axis, then the code to

fit the FGAM with intercept is as follows

T=matrix( seq(0,1,l=J) ,N,J)

L=matrix(1/J,N,J)

fit=gam( y~te(X,T,by=’L’,bs=’ps’,k=c(10,15),m=list(c(2,2),c(4,3))) )

Note that in the documentation for P-spline smooths in mgcv (see ?p.spline), it

is noted that a smooth term of the form

s(x,bs="ps",m=c(2,3))

”specifies a 2nd order P-spline basis (cubic spline), with a third order difference

penalty...” Though it is not standard for a cubic spline to be called 2nd order, this

does seem to be what is implemented within mgcv and so we follow along with this

specification.

Additional functional predictors are added by including additional te terms.

Responses from other exponential family distributions are handled in the exact

same way as the glm function in R.

2.3 Simulation Experiment

In this section, we perform simulations to assess the empirical performance of our

FGAM. We first assess the ability of our FGAM to predict out-of-sample data
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in the Gaussian response case and compare its performance with several other

functional regression models. Next, we examine the coverage properties of the

empirical Bayesian confidence bands proposed in Section 2.2.4.

To generate the data, we created 1000 replicate data sets each consisting of

N curves sampled at 200 equally-spaced points in [0, 1] as follows: Let Xi(t) =∑J
j=1 γj[Z1ijφ1j(t)+Z2ijφ2j(t)] where Zhij ∼ N(0, 1), φ1j(t) =

√
2 cos(πjt), φ1j(t) =

√
2 sin(πjt), and γj = 2

j
; h = 1, 2; i = 1, . . . , N ; j = 1, . . . , J . We consider

two values for J , J = 5 and J = 500, the former resulting in much smoother

predictor trajectories. We examine two cases for the true surface, F (x, t), one

where the FLM holds, F (X(t), t) = β(t)X(t) and the other where it does not.

For the linear true model, F (x, t) = xt. For the nonlinear true model, we use

F (x, t) = −.5 + exp
[
−(x5 )2 − ( t−.5

.3 )2
]
, which looks like a hill or bivariate normal

density.

The error variance changes with each sample so that the empir-

ical signal to noise ratio (SNR) defined by SNR= s2
ŷ

σ2 , where s2
ŷ =

1
N−1

N∑
i=1

[∫
T F (Xi(t), t) dt−N−1∑N

i=1
∫
T F (Xi(t), t) dt

]2
remains constant. We con-

sider the values SNR= 1, 2, 4, 8 in our simulations.

2.3.1 Out-of-Sample Predictive Performance

We fit FGAM and compare its out-of-sample predictive accuracy with three other

popular functional regression models, the FLM, the kernel estimator of Ferraty

and Vieu [29], and the functional additive model (FAM) of Müller and Yao [76]. The

coding used in our analyses was done in R (R Core Team 88). The fda package

(Ramsay et al. 93) implements the standard tools of functional data analysis in R.
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As an initial step in fitting our model, the FLMs and the FAM, we use this package

to smooth the data using B-spline basis functions and a roughness penalty with

smoothing parameter chosen by GCV.

There are two main approaches for estimating the coefficient function β(·) for

a FLM. The first uses smoothing or penalized splines and the second uses a func-

tional principal component analysis (fPCA). We refer to these as FLM1 and FLM2,

respectively. These models can be fit in R using the fda package, more specifically,

the functions fRegress for FLM1 and pca.fd for FLM2. See Ramsay et al. [92],

Chapter 9 for computational details. For FLM1, we choose the smoothing param-

eter by minimizing GCV. For FLM2, we conduct a functional principal component

analysis with a constant, light amount of smoothing and retain enough compo-

nents for each simulation scenario to explain 90% of the total variability of the

functional predictor. Once the scores are estimated, the final step to estimating

FLM2 is fitting an unpenalized linear model in the scores.

To fit the FAM, we use the same number of principal component scores and

the same estimation procedure as for FLM2. The difference comes in the next

step, where a generalized additive model is fit using the scores as predictors. To

estimate the GAM, we use the default settings in the mgcv package and 11 basis

functions for each additive term.

The final model we fit is described in detail in Ferraty and Vieu [29], Ch. 5. The

response is predicted by the nonlinear operator r(X) := E(Y |X). This operator

is estimated by a functional extension of the Nadaraya-Watson kernel estimator:

r̂(X) =
∑N
i=1 YiK {h−1d(X,Xi)}∑N
i=1 K {h−1d(X,Xi)}

, (2.9)

where K is an asymmetrical kernel with bandwidth h and d is a semimetric.

Continuity or Lipschitz continuity of the regression operator in the semimetric
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is assumed. We used the quadratic kernel, K(u) = 3
4(1 − u2)1[−1,1](u), and the

semimetric d(Xi, Xi′) = [
∫
T {Xi(t)−Xi′(t)}2dt]1/2. Code for fitting this model

with automatic bandwidth selection can be obtained from: http://www.math.

univ-toulouse.fr/staph/npfda. Note the differences in the assumptions and

complexities of these three models: the simplest model assumes the response is

linear in the functional predictor, the FGAM lessens the restrictions to additivity

in the functional predictor, FAM restricts to additivity in a linear projection of the

functional predictor, and the kernel estimator makes no restrictions on the form

of the regression function other than continuity.

Each training set contained 67 curves and 33 curves were used for the

test set. The performance of the models was measured by the out-of-sample

RMSE=
33−1

∑
i∈{test set}

(yi − ŷi)2

1/2

. We report results for both the FGAM fit to

the original data and the FGAM fit after X has been transformed using the em-

pirical cdf transformation given in (2.3). In both cases, six cubic B-splines were

used for the x-axis and seven cubic B-splines were used for the t-axis with second

degree difference penalties for both axes. The tuning parameter, γ, for the GCV

criterion (2.7) was taken to be 1.0 in all cases. The mgcv package requires that the

number of coefficients to estimate be less than the sample size, so we must have

the product of the dimensions of the bases be less than the sample size minus one

(for the intercept). The results of the simulations are summarized in Figure 2.2.

The figure reports the median RMSE’s across the 1000 simulations for each

scenario and model. We see that the FGAM loses little to the FLM in terms

of predictive accuracy when the FLM is the true model and provides substantial

improvements in the case when the FLM is not the true model. In fact, all the

models perform quite similarly in the linear true model case with the exception
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of the Ferraty and Vieu model (2.9) which performs considerably worse. In the

nonlinear true model case, we see that fitting an FGAM to the transformed data

performs slightly better than fitting an FGAM to the original curves and that

in general the FGAM offers significant advantages over all the other models. As

expected, the differences in performance between the different models become more

pronounced as the fixed empirical signal to noise ratio increases.

Figure 2.2: Median RMSE across 1000 simulations for six different functional regression
models, four different empirical signal to noise ratios and rough (J=500) and smooth
(J=5) predictor functions. a) Linear true model, b) Nonlinear ("Hill") true surface.

31



N=100 N=500
True Surface SNR=2 SNR=4 SNR=2 SNR=4
Linear 0.9746 0.9684 0.9704 0.9702
Nonlinear 0.9597 0.9665 0.9613 0.9592

Table 2.1: Mean ACP across 500 simulations for nominal coverage probability 0.95.

2.3.2 Bayesian Confidence Band Performance

We now assess the average coverage probabilities (ACP) of the confidence bands

from Section 2.2.4. The observed ACP for the ith simulation is given by

ACP = 1
625

25∑
j=1

25∑
k=1

I{F (x(i)
j , t

(i)
k ) ∈ C.95(x(i)

j , t
(i)
k )},

where {(x(i)
j , t

(i)
k ); j, k = 1, . . . , 25} are a subset of the N × 200 observed

(X(t), t) values for the ith simulation and C.95(x(i)
j , t

(i)
k )} is the entry of F̂(i) ±

2{diag
(
var

[
F̂(i)

])
}1/2 corresponding to (x(i)

j , t
(i)
k ). We consider two values for the

sample size, N = 100 (combining the training and test sets from the previous

section) and N = 500, the same true surfaces from the previous section, and two

values for the empirical signal to noise ratio, two and four. For both the x and

t axes, we use nine basis functions, cubic B-splines, and a second order differ-

ence penalty. We report results for the FGAM fit without an intercept to the

untransformed predictor curves with J = 500. The results for J = 5 were nearly

identical.

To reduce the number of times that the confidence bands are evaluated at

points outside the region jointly defined by the observed (Xi(tj), tj) values, only

grid points that are inside the convex hull defined by the observed values for

each simulation are used in the calculation of mean ACP. A final modification is

necessary to account for the identifiability constraint imposed on the FGAM. To

do this, we fit the FGAM (including the constraint) with negligible amounts of
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smoothing to the true E(Yi|Xi) values (without noise) and take the fitted values

to be the true responses. The mean ACP across the 500 simulations is displayed

in Table 2.1 for each simulation scenario.

We see from the table that the coverage is fairly close to the nominal level

of 0.95, though there is a slight problem with over-coverage in all the scenarios.

Further analysis shows that the average estimated Bayesian standard errors for

the surface are larger than the Monte Carlo standard deviation of the estimated

surface, which is causing in the over-coverage. This is a biproduct of the Bayesian

intervals trying to correct for the smoothing bias inherent in nonparametric regres-

sion. Recall that these intervals do not account for uncertainty in the estimation of

λ1 and λ2. If more precise confidence bands are required, alternatives such as boot-

strapping could be employed; see Wood [125], Sec. 4. Another possibility is a fully

Bayesian analysis. These results indicate that it is safe to use the Bayesian con-

fidence bands to make inferences about the true surface F (x, t). We additionally

ran a subset of these simulation scenarios while computing the confidence bands

using the sandwich estimator of the variance of the estimated surface(results not

included) and found there could be substantial under-coverage in the nonlinear

true model case as a result of bias due to smoothing.

2.4 Application to Diffusion Tensor Imaging Dataset

We now assess the performance of our model on a DTI tractography study. DTI is a

technique for measuring the diffusion of water in tissue. Water diffuses differently

in different types of tissue, and measuring these differences allows for detailed

images to be obtained. Our dataset comes from a study comparing certain white
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matter tracts of multiple sclerosis (MS) patients with control subjects. MS is a

central nervous system disorder that leads to lesions in the white matter of the

brain which disrupts the ability of cells in the brain to communicate with each

other. This dataset was previously analyzed in Goldsmith et al. [32] and Greven

et al. [38].

The result of the DTI tractography, is a 3× 3 symmetric, positive definite ma-

trix (equivalently, a three dimensional ellipsoid) that describes diffusion at each

desired location in the tract. We consider three functions of the estimated eigenval-

ues from these matrices: fractional anisotropy, parallel diffusivity, and perpendic-

ular diffusivity. Fractional anisotropy measures the degree to which the diffusion

is different in directions parallel and perpendicular to the tract, with zero indi-

cating an isotrophic diffusion. More precisely, if the eigenvalues of the ellipsoid

are given by λ1, λ2, λ3, fractional anisotropy is equal to
[
3{(λ1 − λ̄)2 + (λ2 − λ̄)2+

(λ3 − λ̄)2}/{2(λ2
1 + λ2

2 + λ2
3)}
]1/2

, where λ̄ = (λ1 + λ2 + λ3)/3. Parallel (or axial

or longitudinal) diffusivity is the largest eigenvalue of the ellipsoid. Perpendicular

diffusivity is an average of the two smaller eigenvalues. See Mori [73] for an overview

of DTI.

Standard magnetic resonance imagining is used for diagnosing MS, but it is

believed that the extra information provided by the tract profiles produced from

DTI can be used to understand the disease process better. As an example of

the types of effects we could investigate with our model, it has been found (Reich

et al. 94) that parallel diffusivity is increased along the corticospinal tracts of people

with MS. We would hope to see this effect if we were using parallel diffusivity

measurements along that tract to predict MS status. We consider the corpus

callosum tract in our analysis because it is related to cognition.
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Figure 2.3: a) Observed parallel diffusivity along the corpus callosum tract for a sample
of MS patients. b) Parallel diffusivity along the corpus callosum tract transformed by
its empirical cdf for the same patients.

As an illustration of the FGAM, we fit our model using each of the three diffu-

sion measures separately and compare the results with the same models introduced

in the previous section. We also compare using the original curves as the predictor

(1.2) with using the empirical cdf of the curves (2.3). Figure 2.3 contains plots

of the parallel diffusivity measurements along the corpus callosum tract and the

corresponding empirical cdf-transformed values for each subject in the training set.

Throughout the analysis, when fitting the FGAM, we use cubic B-splines with

second-order difference penalties, six B-splines for the x (p)-axis, and seven B-

splines for the t-axis. We found our results to be insensitive to these choices,

and for brevity we do not include results for other values considered. Through-

out this section, γ in (2.7) is taken to equal 1.4. To evaluate the performance of

the models, we examine their leave-one-curve-out prediction error. We repeatedly

fit each model using all the samples except one and then use the fit to predict

the left-out sample. This process is repeated until every sample has been left-
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out once. Our performance measure is the root mean squared error, defined as

RMSE=
[
N−1

N∑
i=1

(yi − ŷ(i))2
]1/2

, where ŷ(i) is the predicted value of the ith re-

sponse value when this sample is left out of the estimation.

2.4.1 Predicting PASAT Score

The first variable we predict is the result of a Paced Auditory Serial Addition Test

(PASAT), a cognitive measure taking integer values between 0 and 60. The subject

is given numbers at three second intervals and asked to add the current number

to the previous one. The final score is the total number of correct answers out of

60. MS patients often perform significantly worse than controls on this test. Since

the corpus callosum is known to play a role in cognitive function, we might expect

to see that the functional measurements along this tract have a significant impact

in forecasting PASAT score. The PASAT was only administered to subjects with

MS. One subject with peculiar tract profiles was removed for simplicity and to

avoid dealing with missing values.

The estimated surface F̂ (p, t) [see (2.1)] is shown in Figure 2.4(a) for trans-

formed parallel diffusivity. Figure 2.4 b) shows a contour plot of the observed

pseudo-t statistics discussed in Section 2.2.4. We can see from this figure that

parallel diffusivity for tract positions around 0.4− 0.6 appears to be influential on

the predicted response; subjects in the middle quantiles for this measurement at

these positions are more likely to score higher on the PASAT, while the opposite

is true for subjects in the upper quantiles at this location.

Figure 2.5 shows an example of a slice of the estimated surface when the un-

transformed curves are used for a fixed x value (left) and for a fixed position along
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b) Contour Plot of Pseudo t−Statistics
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Figure 2.4: a) Contour plot of the estimated surface, F̂ (p, t) [see (2.1)], for transformed
parallel diffusivity along the corpus callosum tract. Also included are the transformed
parallel diffusivity measurements for two subjects. b) Contour plot of pseudo t-statistics
(estimated surface value divided by its standard error). The response is PASAT score.

the tract, t, (right). Parallel diffusivity along the corpus callosum is used as the

predictor in these plots which also include twice standard error bands based on

the sandwich estimator described earlier. Figure 2.5 also shows the same slices for

the estimated second derivative of the surface with respect to t. This can give us

a rough idea of whether the linear model is sufficient. In practice, we look at these

plots for a representative sample of values with both the predictor value fixed and

with the position fixed. We see that the second derivative is significantly non-zero

in some regions, which suggests inadequacy of using an FLM in the untransformed

predictors.

Table 2.2 reports out-of-sample RMSE from separately using each of the three

different diffusivity measurements along the corpus callosum tract as predictors

in the five models under consideration. Here, using FGAM with the empirical cdf

transformation (FGAM-T) led to improved forecasting accuracy compared to using

the raw measurements as predictors (FGAM-O). In fact, FGAM-T (2.3) has lower

37



Measurement FGAM-O FGAM-T FLM1 FLM2 FV FAM
Perp. Diffusivity 12.22 10.46 10.98 11.27 11.16 11.71
Frac. Anisotropy 12.55 11.60 11.87 11.91 12.11 12.70
Para. Diffusivity 11.94 12.09 12.32 12.24 11.97 11.86

Table 2.2: Leave-one-curve-out RMSEs for the three different functional predic-
tors of PASAT score using the following models: FGAM using the original curves
(FGAM-O), FGAM using the empirical cdf transformation [FGAM-T, (2.3)],
FLM1, FLM2, FV (2.9), and FAM.

out-of-sample RMSE than both FLMs for all the functional predictors considered,

indicating that a linear model may be too restrictive in this application. Our

FGAM-T compares favourably with the functional kernel regression model (2.9)

and the FAM, showing better performance when either perpendicular diffusivity or

fractional anisotropy are used as predictors. Though the kernel estimator provided

slightly improved predictions in the parallel diffusivity case, the complex nature of

its fit makes visualization difficult, so it is less useful than the FGAM for helping

us understand the relationship between the DTI measurements and the PASAT

scores.

2.4.2 Predicting MS status: Logistic Link

We now consider classifying the disease status of subjects. Since the PASAT

was only given to the subjects with MS, our sample size is now 88 and includes

controls. We include results using the untransformed curves only. The results using

the quantile transformation were similar. We again use the leave-one-curve-out

procedure described earlier. Fitting the FGAM resulted in the estimated surface

displayed in Figure 2.1 when perpendicular diffusivity is used as the predictor. The

observed perpendicular diffusivity for two subjects is overlaid on the plot; recall
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Figure 2.5: A sample of slices of the estimated surface [plots a) and b)] and estimated
second derivative surface [c) and d)] for fixed tract positions [a) and c)] and fixed untrans-
formed actual predictor [b) and d)] along with the corresponding Bayesian confidence
bands for parallel diffusivity with PASAT score as the response variable.

the interpretation given in the introduction. It appears that the predictor values

at the end of the tract corresponding to t = 1 have a strong influence in predicting

disease status. Subjects in the lower range for perpendicular diffusivity at this end

of the tract seem to be less likely to be classified as having MS, whereas subjects

in the upper range at this position are more likely to have MS. Models were also fit

using fractional anisotropy and parallel diffusivity as predictors. A fourth model

was considered that included a nonparametric component for the subject’s age in

addition to using perpendicular diffusivity. Figure 2.6 contains a plot of the ROC

curves for these fitted models. The model using fractional anisotropy performs

almost universally worse than the other three models. None of the other three

models considered perform universally better than the others. Including age as a

covariate in the model with perpendicular diffusivity did not improve performance.
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Figure 2.6: a) Leave-one-curve-out ROC curves for different FGAMs fit each using
a different functional predictor and an FGAM including perpendicular diffusivity and
a functional component for age. The response is MS status. b) Leave-one-curve-out
ROC curves for both FGAM fits, and three other functional regression models when
perpendicular diffusivity is the functional predictor.

We also compared the FGAM fits to three other generalized functional regres-

sion models. The first is the Ferraty and Vieu estimator (2.9) from the previous

section. The use of this estimator for classification is discussed in detail in Fer-

raty and Vieu [29], Ch. 8. The second alternative model considered is a GLM in

the functional principal component scores (GLM-FPCA) and the third model is a

GAM in the functional principal component scores (FAM). The leave-one-curve-

out ROC curves are displayed in the right plot of Figure 2.6 when perpendicular

diffusivity is the covariate. There is little difference in performance between the

models used.
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CHAPTER 3

SPARSE COVARIATES

Often in FDA, the measurements one has for each curve can be subject to con-

siderable error. In addition, many of the curves can be missing a large number of

measurements. One might first try naively interpolating between points or apply-

ing a smoother individually to each curve to recover the underlying functions, fol-

lowed by fitting the FGAM as if the functions were completely observed. However,

as we will demonstrate, this approach quickly becomes inadequate as the amount

of missingness in the data increases. A better approach, is to pool information

across the functions and jointly estimate the functions while simultaneously fitting

the FGAM. Developing algorithms for accomplishing this will be the topic of the

chapter. Note that for the remainder of the dissertation, attention is restricted to

the identity link-Gaussian error case.

Our goals for this chapter are three-fold: 1) accurate recovery of the sparsely

observed trajectories, 2) accurate recovery of the surface, F (x, t), and 3) accurate

prediction of the response, Y . The missing parts of the trajectories must be im-

puted during the estimation procedure. Three possibilities for doing this are an

expectation-maximization (EM) algorithm, Markov Chain Monte Carlo (MCMC),

or a variational approximation. The advantage of MCMC over an EM algorithm

approach is that uncertainty about the imputed curves is automatically taken into

account during the estimation. Due to the computational overhead associated with

MCMC, we also present a variational Bayes algorithm that can be used for fast

approximate inference and to initialize an MCMC sampler.

Variational Bayes (VB) refers to a specific variational approximation used for

Bayesian inference that relies on the assumption that a posterior density of interest
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factors into a product form over certain groups of model parameters. Though they

are commonly used in computer science, the application of variational approxima-

tions in statistics is relatively new; Ormerod and Wand [80] provides an overview.

When the amount of posterior dependence is small, there is little loss of accuracy

and often very large improvements in computation time over MCMC methods.

Applications of VB to regression problems with missing data can be found in Faes

et al. [22] and Goldsmith et al. [34], the latter of which considered the FLM.

The success of the approximation hinges on the amount of between-group de-

pendence among the parameters in the posterior distribution. The cost of the

computational efficiency gains from the approximations made in VB is the loss

of guaranteed convergence to the correct distribution provided by MCMC. Fac-

torization assumptions are often reasonable for certain groups of parameters in

functional data models (Goldsmith et al. 34). We agree with those authors that

VB should not be considered a replacement for fully Bayesian inference. Instead

we consider it as complementary to MCMC: a useful tool for approximate answers

in large data situations when MCMC becomes intractable. One natural way to use

the two as complements is to use VB estimates as starting values for an MCMC

algorithm in the hopes of achieving faster convergence to, and better exploration

of, the posterior distribution of interest. In our experience, the choice of starting

values is critical for high-dimensional problems such as functional regression.

It is common to estimate the complete functional trajectories from the sparse

data by performing a functional principal components analysis (FPCA); for exam-

ple, the principal components analysis through conditional expectation (PACE)

method of Yao et al. [131]. Whereas a typical functional data analysis smooths the

measurements for each subject separately, the advantage of PACE is that it pools
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data across subjects at each time point to estimate an entire covariance surface.

This “borrowing of strength” across subjects is a main reason for the method’s suc-

cess. Although it is not considered in Yao et al. [131], one might think it reasonable

to use a two-stage approach of first using PACE to recover the function predictors

and then in a second step fitting an FLM using standard techniques or an FGAM

using the procedure in Chapter 2. The main advantage of our Bayesian algorithms

over a two-stage approach is that they allow us to directly account for uncertainty

in the estimates from the FPCA. Our numerical results demonstrate the inade-

quacy of a conventional two-stage estimation procedure and we believe that our

algorithms also gain from using information in the response when estimating the

functional trajectories.

An important step in the PACE procedure is estimating the covariance surface

of the functions using local polynomial modeling. Although PACE often performs

well in a variety of situations, in our simulation studies we observe similar results

to Peng and Paul [83], who found that PACE can have problems in more challenging

settings with higher sparsity and a true covariance function that has more than

three non-zero eigenvalues. In a number of the simulations in Peng and Paul [83],

and in our own experiments, the covariance surface estimated by PACE is not

positive definite and the estimated measurement error variance is negative. We

will demonstrate that our Bayesian algorithms do not suffer from this problem.

Our methods can also be used to effectively recover a greater number of principal

components. Several currently available techniques only consider recovery of two

non-zero principal components in simulation studies and attempt to estimate three

components in real data studies (e.g., Yao and Lee 130 , Yao et al. 131).
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When conjugate priors are used and closed-form expressions exist for all full

conditional distributions in a model, the optimal densities for approximating the

posterior using VB have closed-form expressions as well. It is not possible to obtain

closed-form updates for all the parameters in the FGAM due to the nonconjugate

full conditional distribution for the principal component scores, as they appear in

the likelihood as arguments to the B-spline basis functions used to parameterize the

regression surface. Therefore, Metropolis-Hasting steps are needed for our MCMC

algorithm. For our VB algorithm, we alternatively overcome the nonconjugacy

using a Laplace approximation. An additional complication is the necessity of an

anisotropic roughness penalty for F (x, t), owing to the possibly differing amounts

of smoothness in x and t, which makes the two smoothing parameters difficult to

separate. Using our VB approach, we are typically able to obtain a speed-up of

at least an order of magnitude over generating 10,000 samples from our MCMC

sampler, with minimal sacrifice in accuracy. Our approaches perform quite well

at both out-of-sample prediction and recovering the true surface whether the true

model is linear or nonlinear.

The remainder of the chapter proceeds as follows: Section 3.1 briefly reviews

functional principal component analysis, Section 3.2 discusses our parametrization

for the unknown surface, F (x, t), Section 3.3 discusses our MCMC algorithm for

fitting FGAM, Section 3.4 reviews variational Bayes and provides a VB algorithm

for fitting FGAM, Section 3.5 discusses results of simulation experiments, and in

Section 3.6 we apply our algorithms to forecasting closing prices for seven day

auctions on the auction website eBay.
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3.1 Recovering Sparsely Observed Functional Data

In this section we give a brief overview of the literature on estimating trajectories

from sparsely observed functional data; one of our goals mentioned in the previous

section and a key step in building our regression model. Most methods involve

various techniques for estimating eigenfunctions and eigenvalues from an FPCA.

A common approach for this is to use mixed model representations for penalized

or smoothing splines; see James et al. [48] and the references therein. Another

frequently used approach uses local polynomial modeling; see e.g., Yao et al. [131].

Bayesian approaches to functional data analysis include the wavelet-based mixed

model method of Morris and Carroll [74] and the Dirichlet process based approach

of Rodríguez et al. [97]. Though some papers in the Bayesian literature, including

the ones cited above, appear to be able to deal with irregularly sampled functional

data, it is unclear how these methods perform in the high-sparsity situations we

wish to consider here, and we are not aware of any of these papers analyzing how

their methods perform under varying degrees of sparsity/missingness.

The usual model for the unknown functions is to assume ni noisy measurements

have been taken of Xi(t): x̃i = {x̃i(ti,1), . . . , x̃i(ti,ni)}T with x̃i(tij) = Xi(tij) +

eij; eij i.i.d.∼ N(0, σ2
x); i = 1, . . . , N ; j = 1, . . . , ni. We define the mean and covari-

ance functions µx(t) := E{X(t)} and G(s, t) := Cov{X(s), X(t)}. If X ∈ L2, then

by Mercer’s theorem G(s, t) admits an expansion G(s, t) = ∑∞
m=1 νmφm(s)φm(t)

with (orthonormal) eigenfunctions φm(·) and associated eigenvalues νm, and the

curves have a Karhunen-Loève representation Xi(t) = µx(t) +∑∞
m=1 φm(t)ξim;

ξim
ind.∼ (0, νm), where the ξ’s are known as principal component (PC) scores. If

X(t) is assumed to be a Gaussian process, then the principal component scores

are Gaussian random variables.

45



For all FPCA methods, it is necessary to choose an integer, M , at which to

truncate the basis expansion for the unknown functions (i.e. assume ξk = 0 for all

k > M). This is typically done by including enough scores to explain a prespecified

percentage (e.g. 99%) of the total observed variation in the data, and that is the

approach we take in our analysis of the auction data in Section 3.6.

To initialize both our MCMC and VB algorithms, we take a similar (though

not identical) approach to Yao et al. [131] and perform an FPCA as follows

1. Obtain an estimate µ̂(t) of µ(t) via semiparametric regression of the pooled

data x̃ = (x̃T1 , . . . , x̃TN)T on t̃ = (tT1 , . . . , tTN)T ; ti = (ti,1, . . . , ti,ni)T using

penalized splines.

2. Estimate G(s, t) by fitting a cubic tensor product spline with third-derivative

penalties (to shrink to a quadratic surface) to the "raw" covariances with the

diagonal removed: {x̃i(til)− µ̂x(til)}{x̃i(tis)− µ̂x(tis)}, l 6= s.

3. σ2
x is estimated as the average of the middle two thirds of the diagonal of

the raw covariance matrix minus the diagonal of the smoothed covariance

surface. This is as in Yao et al. [131] and is done to avoid boundary effects.

4. ν̂ = (ν̂1, . . . , ν̂M)T , and φ̂1(t), . . . , φ̂M(t) are obtained as the eigenvalues and

eigenvectors, respectively, from an eigendecomposition of the estimated co-

variance matrix.

5. The principal component scores are the best linear unbiased prediction

(BLUP) estimates: ξ̂i = diag(ν̂){Φ̂(ti)diag(ν̂)Φ̂(ti)T + σ̂2
xINi}−1Φ̂(ti)T{x̃i−

µ̂x(ti)}, ξ̂i = (ξ̂i1, . . . , ξ̂iM)T , and Φ̂(ti) = [φ̂1(ti) : · · · : φ̂M(ti)], where

φ̂j(ti) and µ̂x(ti) denotes the vector of evaluations of the jth estimated

eigenfunction and estimated mean function, respectively, at the timepoints

ti, i = 1, . . . , N.
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The parameters M , µ(t), ν1, . . . , νM , and φ1(t), . . . , φM(t) are fixed at these ini-

tial estimates for our MCMC and VB algorithms. This is as done in Goldsmith

et al. [34], though they do update ν1, . . . , νM . For ease of notation, we suppress the

“hat”/circumflex for these parameters when developing our algorithms in later sec-

tions. The principal component scores as well as the measurement error variance

are updated by both algorithms, and we will demonstrate that our methods can be

used to accurately estimate more principal components beyond the first two. This

procedure is also used in our numerical experiments when, for comparison, we also

estimate FGAM using the two-step approach mentioned in the introduction.

3.2 A Mixed Model Formulation of FGAM

We next discuss our representation for the bivariate surface F (·, ·) and show how

to formulate (1.2) as a mixed model. The mixed model formulation of penalized

splines is now well-known and widely-used, see e.g., Ruppert et al. [99] for a re-

view. The FGAM looks superficially like a bivariate smoothing problem, but it is

more challenging since we do not observe F (x, t) (with error) for pairs (x, t) but

instead we observe only the integral of F{X(t), t} with respect to t. Nonetheless,

some ideas from bivariate smoothing are applicable to the FGAM. As in McLean

et al. [70], we start with a bivariate spline model for F (·, ·) based on P-splines (Eil-

ers and Marx 20 , Marx and Eilers 68). We take a more general approach than the

Bayesian P-splines of Lang and Brezger [54], which performed isotropic smoothing

via a first-order Gaussian random walk prior for the bivariate components in their

additive model.

We must specify a grid of time points t = (t1, . . . , tT )T for approximating the
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integral in (1.2) and we define xi = {xi(t1), . . . , xi(tT )}T to be the ith estimated

trajectory evaluated at t. Our parameterization for the surface F (x, t) follows.

E(Yi|Xi) = η0i +
∫
F{xi(t), t} dt ≈ η0i +

Kx∑
j=1

Kt∑
k=1

∫
BXj {xi(t)}BTk (t)θj,k dt

≈ η0i +
Kx∑
j=1

Kt∑
k=1

LT (BXj,i �BTk )θj,k = η0i +
Kx∑
j=1

Kt∑
k=1

Zj,k,iθj,k,

where BX (·) and BT (·) represent spline basis functions over the domains

of X(t) and t, with BXj,i = [BXj {xi(t1)}, . . . , BXj {xi(tT )}]T and BTk =

{BTk (t1), . . . , BTk (tT )}T denoting vectors of these basis functions evaluated at the

time points t. L = (L1, . . . , LT )T is a vector of quadrature weights for the numer-

ical integration. For ease of notation, we will write µx(t) and Φ(t) as µx and Φ,

respectively, and only specify the grid of evaluation points if it differs from t. We

also define the T ×KxKt matrix

Bξi =
[
{BX

1 (µx + Φξi) · · ·BX
Kx(µx + Φξi)} ⊗ 1TKt

]
�
[
1TKx ⊗ {B

T
1 (t) · · ·BT

Kt(t)}
]
,

(3.1)

i = 1, . . . , N . This matrix is always multiplied on the left by the vector of quadra-

ture weights, L, so we define bTξi ≡ LTBξi . Note that bTξi = (Z1,1,i, . . . , ZKx,Kt,i)T

is the ith row of the matrix Z from McLean et al. [70].

Owing to X(t) and t having differing scales, it is not appropriate to assume

a priori that the amount of smoothing for F (x, t) should be the same in both

arguments. Though we may scale x and t to lie in the unit square, this would

still not result in a scale-invariant tensor product smooth (Wood et al. 129). The

necessitated anisotropic roughness penalty associated with the spline coefficients,

θ = (θ11, . . . , θ1,Kt , θ2,1 . . . , θKx,Kt)T , requires considerable more care than the uni-

variate smoothing necessary for the Bayesian FLM in Goldsmith et al. [33], the

isotropic penalty used in Müller et al. [77], or the penalized structured additive

regression literature (e.g., Fahrmeir et al. 23).
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Wahba [117] first made the connection between spline smoothing and Bayesian

modeling, showing that the usual (frequentist) estimator for a cubic smoothing

spline was equivalent to placing a particular improper Gaussian prior on the spline

coefficients. The penalization used in McLean et al. [70] is equivalent to imposing

the following prior on the spline coefficients

p(θ|λx, λt) ∝ exp
(
−1

2θTPθ(λx, λt)θ
)
,

with Pθ(λx, λt) = λxPx + λtPt, with Px = DT
xDx ⊗ IKt , Pt = IKx ⊗ DT

t Dt. Ip is

the identity matrix of dimension p, Dt and Dx are difference operator matrices of

the prespecified degrees, dx and dt, respectively. This penalty structure leads to a

partially improper Gaussian prior since Pθ(λx, λt) is rank deficient: DT
xDx has rank

Kx − dx, DT
t Dt has rank Kt − dt, so that Pθ(λx, λt) has rank KxKt − dxdt (Horn

and Johnson 43 , Sec. 4.4). To avoid numerical instability associated with inversion

of numerically rank-deficient matrices when sampling from the full conditional of

θ and the appearance of the zero determinant of Pθ(λx, λt) in the full conditionals

of λx and λt, we aim for a simpler representation of the function by employing

the mixed model representation of tensor product splines used in Currie et al. [19],

Sec. 6. The idea is to simultaneously diagonalize the marginal penalties for x and

t. This results in a diagonal penalty structure which is efficient for computations

and easy to interpret.

More precisely, we split the function F (x, t) into an unpenalized part parame-

terizing functions from the nullspace of the penalty (i.e., associated with a diffuse

Gaussian prior on the coefficients) and a penalized part (associated with a non-

diffuse Gaussian prior on the coefficients). We begin by rewriting the vector of

function evaluations for subject i as F (xi, t) = ∑Kx
j

∑Kt
k (BXj,i � BTk )θj,k = Bξiθ.
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We take the spectral decompositions of the marginal penalties, i.e.,

DT
xDx = VxSxVT

x , DT
t Dt = VtStVT

t ,

where both Vx and Vt are orthogonal matrices and Sx and St are diagonal. We

define Ṽx and Ṽt to be the matrices of eigenvectors associated with zero eigen-

values, which have dimension Kx × dx and Kt × dt, respectively. The basis func-

tions for the unpenalized part of the tensor product spline can then be defined as

Bi,0 = Bξi(Ṽt ⊗ Ṽx),

For the basis for the penalized part of the tensor product spline, Bi,p, we first

define St,x = (IKt⊗Sx)+(St⊗IKx), a matrix that has all combinations of sums of the

eigenvalues on the diagonal, and form S̃t,x, which is St,x without the zero entries

on the diagonal corresponding to Bi,0. This can be written as S̃t,x = UTSt,xU,

where U is a KxKt × (KxKt − dxdt) orthogonal matrix constructed by removing

dxdt columns from IKxKt . We thus have

Bi,p = Bξi(Vt ⊗ Vx)US̃−1/2
t,x ,

so that

Bξiθ = Bi,0β + Bi,pδ,

or, for clearer exposition,

Bξiθ = (BξiT)(T−1θ) with T = [T0 : Tp] =
[

(Ṽt ⊗ Ṽx) : (Vt ⊗ Vx)US̃−1/2
t,x

]
,

and T−1 =
[

(Ṽt ⊗ Ṽx) : (Vt ⊗ Vx)US̃1/2
t,x

]T
.

The penalty matrix Pθ(λx, λt) of the reparameterized coefficient vector

(βT , δT )T = T−1θ becomes P̃θ(λx, λt) = TTPθ(λx, λt)T. Since Pθ(λx, λt)T0 = 0,

only the lower right (KxKt − dxdt) × (KxKt − dxdt)-quadrant of P̃θ(λx, λt) is of
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interest. Denoting this submatrix by P̃δ(λx, λt), our penalty is now given by the

diagonal matrix

P̃δ(λx, λt) = λtΨt+λxΨx; Ψt = S̃−1/2
t,x UT (St⊗IKx)US̃

−1/2
t,x ; Ψx = IKxKt−dxdt−Ψt;

see Currie et al. [19].

Recalling that bTξi = LTBξi with Bξi given by (3.1), we can now write∫
F (Xi(t), t) dt ≈ bTξiθ = LTBξiT

(
β

δ

)
= LTBξiT0β+LTBξiTpδ = LTBi,0β+LTBi,pδ.

We use diffuse inverse gamma (IG) priors for the variance components and our

full model is given by

Yi ∼ N(η0i + LTBi,0β + LTBi,pδ, σ2); σ2 ∼ IG(ae, be);

x̃i(ti) ∼ N(µx(ti) + Φ(ti)ξi, σ2
xIni); σ2

x ∼ IG(ax, bx);

ξim ∼ N(0, νm); m = 1, . . . ,M ; (3.2)

δ ∼ N
(
0, [λtΨt + λxΨx]−1

)
; λx, λt ∼ Gamma(al, bl);

β ∼ N(0, σ2
βIdxdt); η0i ∼ N(0, σ2

η); i = 1, . . . , N

3.3 An MCMC algorithm for fitting FGAM

We now describe an MCMC algorithm for fitting FGAM. We will use a Metropolis-

within-Gibbs sampler. The conjugate priors used for the spline coefficients and

the variance components (excluding the smoothing parameters) in our hierarchi-

cal model allow for closed-form expressions for those parameters’ full conditional

distributions. Since their derivations are quite standard, we omit the details until

Appendix A and focus in this section on the more complicated updates for the

smoothing parameters and principal component scores.
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To understand what is being updated and in what order, we start by providing

pseudocode outlining the updates made by our MCMC algorithm to sample the

posterior of model (3.2). Details of how the updates are done will be provided

subsequently. This pseudocode also applies to our variational Bayes algorithm

developed in the next section; the change being that instead of parameters being

updated by randomly drawing from posterior distributions, they are deterministic

updates of hyperparameters and moments of optimal densities. The pseudocode

is given in Algorithm 1.

Algorithm 1 Pseudocode for fitting FGAM given by (3.2)
1: Obtain initial estimates, x, for the trajectories using the method from Section

3.1.
2: Specify penalties and bases for F (x, t). Obtain decomposition from Section

3.2.
3: Initialize other parameters.
4: repeat
5: for i = 1→ N do
6: Update principal component scores, ξi.
7: Update xi.
8: Update Bi,p.
9: end for

10: for i = 1→ N do
11: Update terms involving scalar covariates, η0i.
12: end for
13: Update unpenalized spline coefficients, β.
14: Update penalized spline coefficients, δ.
15: Update smoothing parameters, λx, λt.
16: Update measurement error variance, σ2

x.
17: Update response error variance, σ2.
18: untilMaximum number of iterations reached OR [for VB] convergence criteria

met.

The updates for λx and λt require special attention because of the non-
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conjugality of their full conditional distributions. To see this, we have

p(λx|rest) = p(λx|λt, δ) ∝ p(δ|λx, λt)p(λx) ∝ |λxΨx + λtΨt|1/2 (λx)al+1

× exp{−(bl + 1
2δTΨxδ)λx} ∝ |λxΨx + λtΨt|1/2

× Γ(shape = al + 2, scale = {bl + 1
2δTΨxδ}−1) ≡ fλx(λx), (3.3)

where “rest” is used to denote all parameters and data in the model besides λx. The

derivation is analogous for λt. We do not obtain a closed-form expression for these

full conditionals because of the determinant in (3.3). We overcome this difficulty by

using slice sampling (Neal 78). Slice sampling is a method for efficiently sampling

from nonstandard distributions such as (3.3) by alternatingly sampling from the

vertical region under fλx(x) and then sampling from the horizonal region under the

density at the location of the vertical sample. Neal [78], Sec. 8 demonstrated that

slice sampling can be more efficient than Metropolis methods for fitting Bayesian

hierarchical models.

In our implementation, given an initial value, λ0, and defining g(x) :=

log[fλx(x)], we obtain a draw λ1 from p(λx|rest) as follows

1. Draw u ∼ Unif{0, g(λ0)} which defines a "slice" S := {x : u < g(x)}

2. Obtain an interval [L,R] such that S ⊂ [L,R] by starting with [L0, R0] =

[0, 2] and expanding the interval until [L,R] contains S

3. Draw λ1 ∼ Unif(L,R). If λ1 6∈ S, shrink [L,R] and draw λ1 again until

λ1 ∈ S,

and analogously for λt. For further details including proof of convergence to the

proper posterior, see Neal [78]; his Fig. 1 is especially recommended for building

intuition.

53



The second difficulty in developing our MCMC algorithm occurs when updating

the principal component scores. This stems from the likelihood being a nonlinear

function of the scores (they appear as arguments to B-spline basis functions). We

have

p(ξi|rest) ∝ p(yi|η0i,β, δ, ξi, σ
2)p(x̃i|ξi, σ2

x)p(ξi)

∝ exp

− 1
2σ2

yη0,i −
Kx∑
j

Kt∑
k

LT
{
BXj (µx + Φξi)�BTk (t)

}
θj,k

2
 ·

· exp
[
−{x̃µ,i −Φ(ti)ξi}T{x̃µ,i −Φ(ti)ξi}

2σ2
x

]
· exp

{
−ξTi diag(ν−1)ξi

2

}

where x̃µ,i = x̃i − µx(ti) and yη0,i = yi − η0i, so that

p(ξi|rest) = exp

− 1
2σ2

yη0,i −
Kx∑
j

Kt∑
k

θj,k
T∑
t

LtB
X
j

{
µx(tt) + Φ(tt)Tξi

}
BTk {tt}

2
 ·

·N
[
mξ,i = Sξ,iΦ(ti)T x̃µ,i, Sξ,i =

{
Φ(ti)TΦ(ti)/σ2

x + diag(ν−1)
}−1

]

We update each ξi, i = 1, . . . , n based on its full conditional, with a proposal

density for new values, ξ?i , based only on the trajectories and a Metropolis-Hastings

(M-H) acceptance correction to account for the intractable part of the full condi-

tional involving the likelihood of y.

Specifically, the proposal distribution is

q1(ξi, ξ?i ) = N
[
mξ,i = Sξ,iΦ(ti)T x̃µ,i, Sξ,i =

{
Φ(ti)TΦ(ti)/σ2

x + diag(ν−1)
}−1

]
,

so that q1(ξi, ξ?i ) = q1(ξ?i ) independent of the current state. The acceptance prob-

ability α(ξi, ξ?i ) is then the minimum of one and the following

q1(ξ?i , ξi)p(ξ?i |·)
q1(ξi, ξ?i )p(ξi|·)

=

exp

− 1
2σ2

yη0,i −
Kx∑
j=1

Kt∑
k=1

LT
{
BXj (µx + Φξ?i )�BTk (t)

}
θj,k

2


exp

− 1
2σ2

yη0,i −
Kx∑
j=1

Kt∑
k=1

LT
{
BXj (µx + Φξi)�BTk (t)

}
θj,k

2
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because the ratio of proposal distributions cancels with the ratio of the tractable

parts of the full conditionals.

As we will see in our numerical studies, the implausible trajectories that occa-

sionally result from an FPCA occur much less frequently in our MCMC approach.

This is because the proposals of extreme PC scores are likely to be rejected by

our M-H step since they seem even more implausible when considered along with

the response and current estimates of the regression coefficients in the acceptance

probability.

The formula for the full model posterior can be found in Appendix A.

3.4 A Variational Bayes Approach

In this section we develop a variational Bayes algorithm for fitting the FGAM. We

begin with a quick review of variational approximations.

3.4.1 Review of Variational Bayes

Our notation in this section closely follows that of Goldsmith et al. [34]. For an arbi-

trary density, q(θ), we define µq(θ) ≡ Eq(θ) =
∫
θ0qθ(θ0) dθ0 and σ2

q(θ) ≡ Varq(θ) =∫
{θ0 − Eq(θ)}2qθ(θ0) dθ0 for scalar parameters, and analogously define µq(θ) and

Σq(θ) for vector parameters. We will give a brief overview of the main ideas of

VB, and refer the reader to Bishop [7], Chapter 10 or Jaakkola and Jordan [45] for

further details. Given observed data y and a collection of parameters θ, the goal

of variational Bayes is to find a simplified density q(θ) that approximates the de-
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sired posterior p(θ|y) as closely as possible according to Kullback-Leibler (KL)

divergence. The derivation of a variational Bayes algorithm relies on the result

from Kullback and Leibler [53] that for an arbitrary density, q(θ), the marginal

likelihood, p(y), satisfies p(y) ≥ p(y; q) := exp [
∫
q(θ) log {p(y; θ)/q(θ)} dθ], with

equality if and only if q(θ) = p(θ|y).

While other simplifications, for example that the density of interest, q(θ),

is parametric, are sometimes used for variational approximations, variational

Bayes uses the assumption that a posterior density can be factorized as q(θ) =∏P
p=1 qp(θp) for some partition {θ1, . . . ,θP} of θ. Assuming this factorization for q

and using the above result on KL divergence, it is easy to show (see e.g., Ormerod

and Wand 80) that p(y; q) is maximized when qp is chosen to be

q∗p(θp) ∝ exp
[
E−θp{log p(y,θ)}

]
∝ exp

[
E−θp{log p(θp|rest)}

]
; p = 1, . . . , P ;

(3.4)

where E−θp [·] denotes expectation w.r.t. all model parameters excluding θp. We

thus have a deterministic algorithm where one full iteration updates each com-

ponent θp sequentially using q∗p(θp). The algorithm terminates when the change

in p(y; q) becomes sufficiently small. Notice that the density, p(θp|rest), in (3.4)

is precisely the full conditional from Gibbs sampling, and the optimal density is

tractable when the full conditional is conjugate.

Helpful tools for deriving VB algorithms are directed acyclic graphs (DAGs)

and Markov blankets. A Markov blanket is the set of all child, parent, and co-

parent nodes of a particular node in a DAG. Examples can be found in Bishop [7],

Ch. 8. Calculating the densities in (3.4) is made much simpler because of the result

that p(θp|rest) = p(θp|Markov blanket of θp).
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Figure 3.1: Directed Acyclic Graph for FGAM. Shaded vertices denote known
quantities. The parameters {νm}, {φm}, M, and µx are omitted since they are
not updated by the VB algorithm.

3.4.2 Fitting FGAM Using Variational Bayes

Our VB algorithm for fitting FGAM follows the same general steps used by our

MCMC approach and given in Algorithm 1. As with MCMC, updates for the spline

coefficients and variance components (smoothing parameters excluded) follow from

standard calculations, so we leave them to A.2. The non-standard updates of the

principal component scores and smoothing parameters are discussed below.

Using Θ to denote all unknown parameters in our model (3.2),

we assume the posterior p(Θ|y, x̃) admits the factorization p(Θ|y, x̃) =

q(β)q(δ)q(λx)q(λt)q(σ2)q(σx)
∏N
i=1 q(ξi)q(η0i). The DAG for FGAM is shown in

Figure 3.1.
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For the optimal density for λx, we have from (3.4)

q∗(λx) ∝ exp [E−λx{log p(λx|rest)}]

= exp
[
E−λx

{1
2 log |λxΨx + λtΨt| −

1
2δT (λxΨx)δ + (al + 1) log(λx)− blλx

}]
≈ exp

[
1
2 log

∣∣∣λxΨx + µq(λt)Ψt

∣∣∣− λx
2
{
tr(ΨxΣq(δ)) + µq(δ)

TΨxµq(δ)
}

+ (al + 1) log(λx)− blλx
]

=
∣∣∣λxΨx + µq(λt)Ψt

∣∣∣1/2

× exp
[
−blλx −

λx
2
{
tr(ΨxΣq(δ)) + µq(δ)

TΨxµq(δ)
}]
λal+1
x ≡ q̃λx(λx), (3.5)

where the approximation comes from plugging in µq(λt) for λt to avoid taking an

expectation of the determinant term over λt. Notice cq(λx) ≡
∫∞

0 q̃λx(x) dx has the

form cq(λx) =
∫∞

0 xal+1e−xf(x) dx which can be approximated by generalized Gauss-

Laguerre quadrature. This type of quadrature is implemented in R in the package

statmod (Smyth et al. 109), and we use it to determine a grid of G points, g, and

quadrature weights, Lg. Our approximations are then given by cq(λx) ≈ LT
g q̃λx(g)

and µq(λx) ≈ {LT
g q̃λx(g)}−1LT

g {g� q̃λx(g)} .

Due to the exponential term in (3.5), moderate to large values of λx result in

q̃λx(λx) being evaluated to be zero, unless care is taken during the computation to

avoid underflow. One strategy for avoiding loss of precision is as follows. Define

`λx(x) = log q̃λx(x) andmλx = maxg `λx(g), then cq(λx) ≈ exp(mλx)LT
g exp{`λx(g)−

mλx}. The term exp(mλx) is in both the numerator and the denominator of µq(λx)

and thus drops out in that calculation. Taking the logarithm of the determinant

in q̃λx(λx) is not a problem because Ψx and Ψt are diagonal.

For updating the principal component scores in our VB algorithm, recall the
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form of the full conditional

p(ξi|rest) ∝ p(yi|η0i,β, δ, ξi, σ
2)p(x̃i|ξi, σ2

x)p(ξi)

∝ exp
{
− 1

2σ2 (yi − η0i − bTξiθ)2
}

exp
{
− 1

2σ2
x

||x̃i − µx(ti)−Φ(ti)ξi||22
}

× exp
{
−1

2ξTi diag(ν−1)ξi
}
,

where as before bTξi = LTBξi with Bξi given by (3.1). We have,

E−ξi

{
− 1

2σ2 (yi − η0i − bTξiθ)2
}

= −
µq(1/σ2)

2 E−ξi

[
{yi − µq(η0i) − E−ξi(b

T
ξi

θ)}2
]

− 1
2µq(1/σ

2)σ
2
q(η0i) −

µq(1/σ2)

2 E−ξi

{
(bTξiθ − E−ξi(b

T
ξi

θ))2
}

= −
µq(1/σ2)

2
[
(yi − µq(η0i) − bTξiµq(θ))2 + σ2

q(η0i)

+ E−ξi

{
(θ − µq(θ))Tbξib

T
ξi

(θ − µq(θ))
}]

= −
µq(1/σ2)

2
{

(yi − µq(η0i) − bTξiµq(θ))2 + σ2
q(η0i) + tr(bξib

T
ξi

Σq(θ))
}

Therefore,

q∗(ξi) ∝ exp
[
−
µq(1/σ2)

2
{

(yi − µq(η0i) − bTξiµq(θ))2 + σ2
q(η0i) + tr(bξib

T
ξi

Σq(θ))
}

−
µq(1/σ2

x)

2 ||x̃i − µx(ti)−Φ(ti)ξi||22 −
1
2ξTi diag(ν−1)ξi

]
∝ exp

[
µq(1/σ2){yi − µq(η0i)}bTξiµq(θ) −

µq(1/σ2)

2
{

(bTξiµq(θ))2 + bTξiΣq(θ)bξi

}
+ µq(1/σ2

x){x̃i − µx(ti)}TΦ(ti)ξi

− 1
2ξTi

{
µq(1/σ2

x)ΦT (ti)Φ(ti) + diag(ν−1)
}

ξi

]
≡ q(ξi).

Since this does not have the form of a standard, known density, we will employ a

Laplace approximation. The use of Laplace approximations for variational infer-

ence with nonconjugate models was also explored in Wang and Blei [119]. This is

given by

q∗(ξi) = N(ξi,0,Λ−1
i ) where Λi = −DξTi

Dξi log q(ξi)
∣∣∣
ξi=ξi,0

, (3.6)

59



with Da[·] denoting differentiation w.r.t. the vector a and ξi,0 denoting the mode

of q∗(ξi), which is found by a numerical optimization routine. The formula for

Λi is given in A.2. We expect the Laplace approximation to perform well in high

sparsity settings because the Gaussian prior becomes the dominant part of the

posterior in these situations.

To construct our algorithm, we also require the expectation of bξi and the

expectation of its outer product with respect to ξi. To do this we use second-order

Taylor expansions about ξi,0. These derivations are also left to Appendix A.2.

Our log-likelihood lower bound, which is used for monitoring convergence of our

algorithm, is derived in Appendix A.3 and the full variational Bayes algorithm is

given in Appendix A.4 as Algorithm 2.

3.5 Simulation Study

We now conduct a simulation study to compare the efficacy of our proposed

approaches. We fit each model to 100 simulated data sets. The true func-

tional covariates are given by X(t) = ∑4
j=1 ξjφj(t), with ξj ∼ N(0, 8j−2) and

{φ1(t), . . . , φ4(t)} = {sin(πt/|T |), cos(πt/|T |), sin(2πt/|T |),

cos(2πt/|T |)}, with |T | denoting the measure of the interval T . To examine how

our model performs with both sparse and dense but irregularly observed data,

we generate observed covariates by randomly selecting Ji = 10 or Ji = 40 points

for each subject from a grid of 50 equally-space points used to generate the true

response. We consider three different levels of the measurement error variance,

σ2
x = 0, 1, and 4. The response error variance is taken to be σ2 = 1. We examine

two different possibilities for the regression surface F (x, t). First, a case where the
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Figure 3.2: Plots a) and b) show three observed functional predictors for varying levels
of sparsity when σx = 1. The true trajectories are also plotted in grey. Plot c) shows
the surface F (x, t) = 2x sin(πt) and plot d) the surface F (x, t) = 20 cos

(
−x

8 + t
4 − 5

)
.

FLM is the true model, F (x, t) = 2x sin(πt), with T = [0, 1]; and next, a case

where the FLM does not hold, F (x, t) = 20 cos
(
−x

8 + t
4 − 5

)
, with T = [0, 10]. A

sampling of some generated curves including measurement error for both levels of

sparsity as well as plots of both true surfaces can be found in Figure 3.2.

For our comparison we consider seven different methods for fitting FLMs and

FGAMs: 1) a baseline/oracle FGAM fit by the Chapter 2 approach when the

fully observed curves without measurement error are known (trueX), 2) FGAM

fit as in Chapter 2 with fixed trajectories estimated using the procedure outlined

in Section 3.1 (PACE), 3) FGAM fit using variational Bayes on the sparse, noisy

curves (VB), 4) FGAM fit using MCMC and the sparse, noisy curves (MCMC), 5)

as in 4) except initial values are supplied by the VB fit (VB-MCMC), 6) FLM fit

using penalized splines with trajectories obtained from the Section 3.1 procedure

(FLM-PACE), and 7) FLM fit to the fully observed curves without measurement

error (FLMtrueX). Each method used cubic B-splines and second-order difference

penalties. The Chapter 2 implementation of FGAM is again fit using the code

available in the package refund (Crainiceanu et al. 16) in R (R Core Team 88).
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Smoothing parameters are chosen by generalized cross validation (GCV) using the

package mgcv (Wood 128), which is also used to estimate the FLMs. MCMC runs

one chain for 10,000 iterations after a burn-in of 1000, whereas VB-MCMC uses

only 1000 iterations after a burn-in of 500. Each method uses and, if applicable,

estimates exactly the true number of non-zero components M = 4. For each

simulated data set, we use two thirds of the 100 observations to fit the models and

the other one third for prediction.

We first compare how well PACE, VB, MCMC, and VB-MCMC do at esti-

mating the functional covariates. The median over simulations of the in-sample

root mean integrated square error, RMISE-X2 = 1
N

∑67
i=1

∫
T

{
Xi(t)− X̂i(t)

}2
dt,

for each scenario and method is reported in Figure 3.3 a). We see that the PACE

method does not perform well in the sparse data scenarios (Ji = 10). One reason for

this is that it does not account for the variability from imputing the principal com-

ponent scores. An additional reason is difficulties in estimating a covariance matrix

for the functional predictors. The estimate is often singular or near-singular and

this causes numerical problems when attempting to estimate all four non-zero prin-

cipal component scores using the method presented in Section 3.1. Our Bayesian

algorithms do not suffer from this problem even when starting from poorly condi-

tioned initial estimates from our PACE implementation. We see that VB performs

quite well at recovering the trajectories, even in the Ji = 10 scenarios. MCMC per-

forms slightly worse than VB here. Further investigation showed that MCMC on

average slightly overestimated σ2
x which made it less accurate for in-sample recov-

ery, but that this added variance made for more accurate prediction of trajectories

out-of-sample.

Now turning to estimation of the true surface F (x, t), we report the median
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Figure 3.3: a) Median RMISE over 100 simulations for two levels of sparsity and different
values for the measurement error variance for recovering in-sample trajectories, X(t). b)
Median RISE for predicting the true surface, F (x, t). b) Includes trueX which is not
relevant for a). Values that do not fall within the y-axis limits are individually labeled.

root integrated square error, RISE-F2 =
∫
X
∫
T

{
F (x, t)− F̂ (x, t)

}2
dt dx, in Fig-

ure 3.3 b). We evaluate the RISE only at (x, t) values that are inside the convex

hull defined by the observed trajectories for that sample to avoid regions of the

plane where there are no data. We again observe performance from the PACE

method to be poor in the sparse settings. Interestingly, the MCMC and MCMC-

VB approaches have lower ISE than the trueX method. We suspect this is due

to the MCMC algorithm on average choosing larger smoothing parameters which

are closer to the optimal values for smoothing the surface than those chosen by

GCV for the trueX fits. Due to the additional smoothing performed by the inte-

gration in (1.2), the optimal amount of smoothing for estimating the response and

for estimating the surface are different (Cai and Hall 9). Also noteworthy is the

substantial difference between VB and MCMC depending on the true regression

surface. This again seems to be due to differences in how the smoothing parameters

are chosen.
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Figure 3.4: Median RMSE over 100 simulations for out-of-sample predictions of the
response, Y , for two levels of sparsity and different values for the measurement error
variance. Values that do not fall within the y-axis limits are individually labeled.

Finally, results for root mean square error (RMSE) for predicting the out-of-

sample response, RMSE-Y2 = 1
33
∑100
i=68(Yi − Ŷi)2, can be found in Figure 3.4. We

see that the performance of MCMC matches and even sometimes outperforms the

oracle trueX method that knows the entire trajectories. Overall, we recommend

the combination of VB for initial estimates followed by MCMC as it appears to be

best or close to best in nearly all scenarios. The total elapsed time for estimating

FGAM on one data set averaged over all simulations and scenarios was 43.3 seconds

for VB, 732.0 seconds for MCMC, and 153.5 seconds for VB-MCMC.

3.6 Analysis of Auction Data

In this section we fit our proposed models to auction data from the online auction

website eBay and attempt to forecast closing auction price. The data set contains

the time and amount of every bid for 155 seven-day auctions of PalmM515 Personal
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Digital Assistants (PDA) that took place between March and May, 2003. Each

auction is "standardized" to start at time 0. This data was previously analyzed

using functional data methods in a series of work by W. Jank, G. Shmueli and

coauthors (e.g., Jank and Shmueli 49 , Wang et al. 121). The PACE methodology

introduced in Section 3.1 was used to analyze this data set in Liu and Müller [63].

Typically, each auction consists of three clearly discernible parts: an initial period

with some bidding, a middle period with very few bids, and a final period of rapid

bidding as the auction finishes (Wang et al. 121). This sparsity and irregularity in

the observed bid data means that the usual methods of function data analysis are

not appropriate.

Our raw data is actually the maximum amount the bidder is willing to pay

for the item, often called the willing-to-pay (WTP) value. To recover the current

item price from the WTP values, we must use the table available at http://

pages.ebay.com/help/buy/bid-increments.html. When a new WTP value is

entered that is more than any previous WTP value, the new price is determined

by incrementing the current price in an amount given by this table. A new bidder

must enter an amount at least as large as this new price plus the increment given

by the table. We assume there is an underlying smooth price process that we

attempt to recover with our proposed approaches.

We use the logarithm of the ratio of successive prices during the first six days

of the auction to predict the logarithm of the closing price on the final day. Hourly

prices are used so that we are trying to recover 6×24 = 144 prices for each auction.

When an auction has multiple bids in the same hour, we take the average of the

prices corresponding to those bids as the observed price for that hour. As in Liu

and Müller [63], we set any negative values for the log-price ratio equal to zero,
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which can occur because initial log-price at time 0 is taken to be zero. To show

the usefulness of our MCMC and VB methods, we fit the FGAM and FLM using

the trajectory of observed log-price ratios, log{x̃i(ti,j)/x̃i(ti,j−1)}, for the first six

days in order to predict the logarithm of the final selling price at the end of the

seventh day. We emphasize that no information on the prices from the final day of

the auction are included in the functional predictor so that we have a true measure

of forecasting accuracy.

We randomly partition the data into training and test sets with two thirds

of the samples used for training and one third for testing. We compute the root

mean square error (RMSE) for predicting the logarithm of the closing price for

the test data set after fitting each model to the training data. This is repeated for

25 different splits into test and training sets. For comparison, we also considered

the simple two-step approach of using PACE to recover the functional predictors

and then using these estimates to fit FLMs and FGAMs in refund as in the fully-

observed predictor case from McLean et al. [70]. For the FGAM methods, ten basis

functions were used for both axes.

The surface estimated by our MCMC algorithm fit to the entire data set is

displayed in Figure 3.5 b) along with the observed and estimated log-price ratios

for five randomly chosen auctions. Figure 3.5 a) plots all estimated trajectories

and additionally histograms showing the frequencies of observations for both X(t)

and t; notice from the histogram on the right part of the plot that the majority

of the data is grouped at very low log-price ratios. In b) we see that large values

of the log-price ratio in the early hours of the auction result in a lower predicted

value for the closing price and that smaller ratios later towards the end of the

sixth day of the auction result in higher predicted closing price. Nonlinearities in
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Figure 3.5: a) All estimated trajectories from use of our MCMC algorithm on the
auction data with points representing observed data. Five trajectories are highlighted
and also plotted in b). Also included are two histograms showing which covariate values
occur with the highest frequency (on the right) and the frequency of bids for each hour
of the auction (on top). b) Shows the estimated surface F̂ (x, t) from fitting FGAM to
the auction data using MCMC. The overlayed points and curves are the same as a).

the log-price component of the estimated surface suggest that an FLM may not

be flexible enough for this data set. There appears to be some undersmoothing of

the functional predictors in Figure 3.5 a). Cai and Hall [9] showed that for optimal

prediction in the FLM, the coefficient function should be undersmoothed because

of the additional smoothing performed by the integral in the regression function.

We conjecture that some degree of undersmoothing of the functional predictors is

desirable for our forecasting problem when estimating (3.2) for similar reasons.

The median out-of-sample RMSE over 25 partitions of the data is reported in

Table 3.1 along with standard deviations. We can see that our Bayesian approach

for fitting FGAM offers the best performance in this case, with both FGAM-

MCMC and FGAM-VB offering much improved performance over the methods

that only use PACE followed by estimation of FGAM in refund. Both methods
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FLM-PACE FGAM-PACE FGAM-MCMC FGAM-VB
0.5917(1.3093) 4.913(0.4322) 0.0914(0.0052) 0.0905(0.0037)

Table 3.1: Median RMSE (with standard deviation in parentheses) for out of
sample predictions of log-final selling price for 25 random splits of the auction
data

that simply used PACE and then assumed fully observed data had very poor

performance for some of the splits when the imputed trajectories were especially

bad.
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CHAPTER 4

TESTS FOR LINEARITY

Our main goal in this chapter will be to test H0 : E(Yi|Xi) = θ0 +
∫
T β(t)Xi(t) dt

(FLM) vs. H1 : E(Yi|Xi) = θ0 +
∫
T F (Xi(t), t) dt (FGAM). As was noted in Chap-

ter 2, ∂2

∂x2F (x, t) ≡ 0 implies H0, F (x, t) = β(t)x. Using a second-order difference

penalty, this corresponds to an infinite amount of smoothing in the x-direction.

It will be shown how this corresponds to having a zero variance component in a

linear mixed model. The key idea is to reparameterize the model, partitioning into

a parametric (unpenalized) term and a smooth, nonparametric term[s] subject to

a slightly different penalty than was considered in Chapter 3. In this chapter,

variance components in mixed models will explicitly take the role of smoothing

parameters in the standard nonparametric model. The idea of using mixed mod-

els in this way was popularized by the monograph of Ruppert et al. [99] and has

been the subject of much research since its publication. In this chapter, we focus

on the parameterization owing to Wood et al. [129], which has a number of useful

properties, as will be demonstrated shortly. We will explore likelihood ratio tests

(LRTs), restricted likelihood ratio tests (RLRTs), and Bayes factor approaches for

our testing problem.

We begin by reviewing restricted maximum likelihood estimation in Section 4.1,

followed by a review of LRTs and RLRTs for zero variance components in linear

mixed models in Section 4.2, and wrap up our review of background material with

a discussion of Bayes factors in Section 4.3. We introduce the Wood et al. [129]

construction in Section 4.4. In Section 4.5 we demonstrate how the construction

can be used to test for linearity of FGAM as well as no effect of the functional

covariate. In Section 4.6 by extending the work of Maruyama and George [66] and
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Rouder et al. [98], we show how generalized g-priors for the penalized coefficients

(random effects) can be used to obtain simple expressions for Bayes factors for our

hypotheses of interest. Section 4.7 provides a simulation study of our proposed

approaches, and Section 4.8 concludes with an application of our methods to some

motor vehicle emissions data.

4.1 Restricted Maximum Likelihood Estimation

Consider a linear mixed model of the form

Y = Xβ +
J∑
j=1

Zjbj + ε, ε ∼ N(0, σ2IN), bj ∼ N(0, σ2
j Iqj), (4.1)

where dim(β) = q0 and dim(bj) = qj, and it is assumed that bj ⊥⊥ bk; j 6= k and

ε ⊥⊥ bj; j = 1, . . . , J . Typically, β are called the fixed effects and the bj’s are

known as random effects. Though the random effects often have a more general

covariance structure, we do not need to consider such a case in this dissertation.

We have E(Y) = Xβ and cov(Y) = ΣJ := σ2IN +∑J
j=1 σ

2
jZjZTj . Frequently, one

is interested in testing that a variance component, say σ2
j is equal to zero, which

implies the random effect, bj, has no effect on predicting the response and can be

removed from the model. It is easily seen that the log-likelihood for this model is

`(β, σ2, σ2
1, . . . , σ

2
J) = −N2 log(2π)− 1

2 log |ΣJ | −
(Y − Xβ)TΣ−1

J (Y − Xβ)
2σ2 .

Maximum likelihood estimates for the error variance and other components of

variance in this model are known to be biased because they do not account for

lost degrees of freedom from estimating β. For this reason, a popular alternative

to maximum likelihood is restricted maximum likelihood (Patterson and Thomp-

son 81). The restricted likelihood can be obtained by integrating the usual likeli-
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hood w.r.t. β. The logarithm of the restricted likelihood is given by

`R(σ2, σ2
1, . . . , σ

2
J) = `(β, σ2, σ2

1, . . . , σ
2
J)− 1

2 |X
TΣ−1

J X|.

Restricted maximum likelihood (REML) and maximum likelihood are the main

alternatives to methods that minimize prediction error, such as GCV or Akaike’s

information criteria (AIC) and its siblings, for estimating penalized spline models.

There is some evidence to suggest that it should be preferred to GCV because it

avoids GCVs occasional tendencies to badly undersmooth and offers slightly better

RMSE performance in practise (Reiss and Ogden 95).

When the variance components and error variance are known, the best linear

unbiased estimates (BLUPs) for β and the random effects bj, can be shown to be

given by the minimizer of the penalized least squares objective function

1
2σ2 ||Y − Xβ − Zb||2 + bTV−1

J b,

where Z = [Z1 : Z2 : · · · : ZJ ], VJ = diag(σ2
11q1 , · · · , σ2

J1qJ ), and b =

(bT1 , · · · ,bTJ )T . The solution is given by

(β̂T
, b̂T )T = (BTΣ−1

J B + D)−1BTY,

where B = [X : Z] and D = bdiag(0q0 , σ
2V−1

J ). Note the similarities with the

estimates from Chapter 2 if we define λj = σ2/σ2
j . The variance components must

be estimated using some numerical optimization routine such as the EM algorithm

or Newton’s method (see, e.g., Pinheiro and Bates 84). Estimation in R is handled

by the package lme and lme4 (Bates et al. 4). Penalized spline models can be fit

via REML using the package mgcv (Wood 128).
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4.2 LRTs and RLRTs for Linear Mixed Models

Restricting attention to the one variance component case (J = 1), consider testing

the hypothesis H0 : σ1 = 0 vs. H1 : σ1 > 0, using a likelihood ratio test

LRT = 2 sup
H1

`(β, σ2, σ2
1)− 2 sup

H0

`(β, σ2, σ2
1),

or a restricted likelihood ratio test

RLRT = 2 sup
H1

`R(β, σ2, σ2
1)− 2 sup

H0

`R(β, σ2, σ2
1).

Wilk’s theorem/approximation states that under some mild regularity conditions,

a LRT statistic converges in distribution to a chi-squared random variable under

H0. However, because σ1 is on the boundary of the parameter space under the

null hypothesis, the conditions for Wilk’s theorem do not hold. Self and Liang [104]

were able to show for some simple mixed models with one variance component, that

the LRT above actually converges to a mixture distribution 0.5χ2
0 + 0.5χ2

1, where

χ2
d denotes a chi-squared random variable with d degrees of freedom. Further

developments for longitudinal mixed models were made by Stram and Lee [112].

However, both those papers require that the response variables, yi, be separable

into independent clusters.

This requirement is not satisfied by model (4.1). Crainiceanu and Ruppert [17]

found that the mixture-χ2 approximation is too conservative to be used for pe-

nalized spline models. Crainiceanu and Ruppert [17] were able to derive the exact

finite-sample distributions for both the RLRT and LRT for models with one vari-

ance component. Since we will only consider RLRTs in this chapter, we provide

the distribution of RLRT only:

RLRT = sup
λ

[
(N − q0 − 1) log{1 + Un(λ)} −

q1∑
k=1

log(1 + λµk)
]

; (4.2)
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where λ = σ2
1/σ

2, with U(λ) = N(λ)/D(λ) for

N(λ) =
q1∑
k=1

λµk
1 + λµk

w2
k, D(λ) =

q1∑
k=1

log(1 + λµk) +
N−q0∑
k=q1+1

w2
k;

with wk
i.i.d.∼ N(0, 1); k = 1, . . . , N − q0 − 1 and µk being the eigenvalues of the

matrix ZT (IN − X(XTX)XT )Z. While this may look awful, it is actually quite

easy to simulate from. The eigendecompostion of the q1 × q1 matrix need only

be computed once, and then all that is required to obtain a draw from the RLRT

distribution is simulation of q1 χ
2
1 random variables plus one χ2

N−q0−q1−1 random

variable.

While the theory is fully developed for the one variance component case, ex-

tensions to tests for models with multiple variance components (which we will be

needing for FGAM) have proven much harder and this is still an open problem.

An approach that has proven to work well empirically is that of Greven et al. [37],

which used ideas from pseudo-likelihood estimation and relied on the assumption

that the restricted likelihood ratio tests (RLRT) for their variance components

of interest could be accurately approximated by an RLRT that assumes the nui-

sance random effects are known. Another possible approach has been proposed

by Wang and Chen [123], which developed F-tests for penalized spline models esti-

mated in the mixed model framework. We choose to work with the approach of

Greven et al. [37] because it has been shown through extensive simulation studies by

Scheipl et al. [102] to work well and because the method is available in an R package

by the same authors. The simulations in Wang and Chen [123] also confirmed the

effectiveness of the Greven et al. [37] approach, with their F-tests only offering mi-

nor improvements in the case where a nuisance variance component is very close to

zero. As will be seen shortly, this would seem to be an unlikely occurrence for the

test we will develop for FGAM because the nuisance effect will correspond to the
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effect of the FLM. We refer to the Greven et al. [37] method as the pseudo-RLRT.

A further complication not addressed by the above papers is how to test for

multiple variance components being simultaneously zero under the null hypothesis.

This is the situation that we will be faced with for FGAM and the subsequent

sections will explore some ideas for how to deal with this problem. One additional

important fact to be aware of is that it is a requirement for RLRTs (but not LRTs)

that the fixed effects have the same structure under both the null and alternative

hypotheses. The tests we consider in this chapter always have the same fixed

effects structure under both hypotheses.

4.3 Review of Bayes Factors

Bayes factors were introduced in Jeffreys [50] and are the most popular approach

for hypothesis testing and model selection in Bayesian statistics. They provide a

measure of the evidence in the observed data in favour of one hypothesis/model

over another. Given two modelsM0 andM1, the Bayes factor, B10 is the ratio of

the posterior odds ofM1 to the prior odds, where the odds for a given probability

are defined by odds=probability/(1−probability). Denoting the observed data by

D, the posterior probability of modelM1 is p(M1|D) = p(D|M1)p(M1)
p(D) , and similarly

forM0. Using this result the Bayes factor is given by

B10 := p(M1|D)
1− p(M1|D)

1− p(M1)
p(M1) = p(M1|D)

p(M0|D)
p(M0)
p(M1) = p(D|M1)

p(D|M0) .

Computation of p(D|M) involves integrating over all model parameters. For a

model parameterized by the vector θ, we have p(D|M) =
∫
p(D|θ,M)π(θ|M) dθ.

These integrals are typically intractable and one must resort to approximations for

their computation. Though many different Bayes factor approximations have been
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B10 Evidence againstM0
1 to 3 Not worth more than a bare mention
3 to 20 Postive
20 to 150 Strong
>150 Very strong

Table 4.1: Rules from Kass and Raftery [51] for interpreting Bayes factors.

proposed, the most common are Laplace approximations and MCMC techniques

such as bridge sampling (Meng and Wong 71). This is normally what is done in

the Bayesian linear mixed model and generalized linear mixed model setting; see

Pauler et al. [82], Sinharay and Stern [108], or Saville and Herring [101] for details.

An advantage of Bayes factors over likelihood ratio testing is that there is no

requirement for the models to be nested (though we will only consider nested

models in this dissertation) and unlike p-values, Bayes factors can be used to

provide evidence in favour of the null hypothesis. There is also evidence that Bayes

factors naturally protect against overfitting (Kass and Raftery 51). Whenever Bayes

factors are used, it is important to check for sensitivity of the Bayes factor to the

prior specification used. Table 4.1 reproduces a table in Kass and Raftery [51] that

provides guidelines for interpreting Bayes factor values.

4.4 More Mixed Models for Penalized Splines

In this section we discuss how to represent penalized splines smooths as linear

mixed models with the goal of expressing the FGAM (1.2) in the form (4.1). Before

going through the reparameterization that will receive most of the attention in this

chapter, we introduce a simple first approach using a more common mixed model

representation.
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4.4.1 A Simple First Approach

The following representation which can be found in Section 6.2.2 of Wood [126].

Using notation from Chapter 2, our penalized likelihood is

(y− Zθ)T (y− Zθ) + λxθ
TPTxPxθ + λtθ

TPTt Ptθ

where Px = Dx ⊗ IKt and Pt = IKx ⊗ Dt with Dx and Dt being second order

differencing matrices on adjacent B-spline coefficients for the x-axis and t-axis,

respectively. First, we obtain the eigendecomposition of the penalty, PTxPx+PTt Pt =

UΛUT , where U is an orthogonal matrix of eigenvectors and Λ is the diagonal

matrix of eigenvalues. Write U = [Ur : Uf ], where Ur corresponds to the non-zero

eigenvalues and Uf to the four zero-eigenvalues corresponding to the null space

of the penalty. Now re-parameterize to (bTr ,βT )T = UTθ, and form Xf = ZUf ,

Xr = ZUr and P̃ = UT
r (λxPTxPx + λtPTt Pt)Ur. We now have a linear mixed model

y = Xfβ + Xrb + ε, b ∼ N(0, P̃−1), ε ∼ N(0, σ2
eI).

This mixed model can be fit in R using the package mgcv (Wood [128]); however, it

is not in a very helpful form for our testing problem because the covariance of the

vector of random effects depends on two smoothing parameters. Thus, more work

is required as we cannot use this formulation for our desired test.

Recall that the null hypothesis is equivalent to H0 : λx =∞ with λt as a nui-

sance parameter. Arguing along the same lines as Greven et al. [37], a reasonable

approach would be to fix the variance component for λt at its REML estimate,

form pseudo residuals and conduct our test in their framework discussed in Sec-

tion 4.2. The approach is outlined below. Form the augmented response vector

ỹ = (yT ,0T )T and the augmented design matrix Z̃ = [ZT : λ1/2
t PTt ]T , with λt
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assumed known. Recalling (2.5), our penalized pseudo-likelihood is

−1
2(ỹ− Z̃θ)T (ỹ− Z̃θ) + λx

2 θTPTxPxθ.

First, obtain the eigendecomposition of the penalty for x, PTxPx = UΛUT , with Λ

containing four zeros on the diagonal corresponding to the null space of the tensor

product penalty with second-order marginal penalties. Re-parameterize so that

the new coefficient vector is (bTr ,βT )T = UTθ and form Xf = Z̃Uf and Xr = Z̃Ur.

We now have the linear mixed model

ỹ = Xfβ + Xrbr + ε̃, br ∼ N(0, λ−1
x Λ−1

∗ ), ε̃ ∼ N(0, σ2
eI),

where Λ∗ is the diagonal matrix of non-zero eigenvalues of the penalty for x. Re-

parameterizing again to b = Λ1/2
∗ br and Z̃ = XrΛ1/2

∗ , and we now get a one

variance component linear mixed model

ỹ = Xfβ + Z̃b + ε̃, b ∼ N(0, λ−1
x I), ε̃ ∼ N(0, σ2

eI).

Note that while the data augmentation idea we have presented is a standard

trick to efficiently compute the solution of a penalized least squares problem by

recasting it as an unpenalized least squares problem, it has not before been sug-

gested to simplify tests of variance components/smoothing parameters in penalized

spline models. Therefore, this approach is of interest in general for penalized spline

models and not simply for our FGAM testing problem.

4.4.2 (Low Rank) Penalized Spline ANOVA Models

In this section to allow for maximum generality, we work with a nonparametric

model of the form

Yi = β0 +
p∑
j=1

Lij{fj(xij)}+
∑∑
k<l

Likl{fkl(xik, xil)}+ · · ·+ εi,
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where εi ∼ N(0, σ2); i = 1, . . . , N and the L’s are known linear functionals. In

the usual additive model, Lij{fj(xij)} = fj(xij). Using this notation, for the FLM

and FGAM we have

Yi = β0 + Li1{f1(t)}+ εi = β0 +
∫
f1(t)Xi1(t) dt+ εi

and

Yi = β0 + Li11[f11{Xi1(t), t}] + εi = β0 +
∫
f11{Xi(t), t} dt+ εi,

respectively, where f1 is the coefficient function β(t) and f11 is F from previous

chapters. Of course the above integrals will need to be approximated as in the

previous chapters. The model could also contain both fixed effects and random

effects of scalar covariates, but we omit them here for simplicity.

We now review the tensor product spline basis construction of Wood et al. [129]

which parallels smoothing spline ANOVA (for e.g., Gu 39 , Wang 122); the main

difference being the use of low-rank spline bases. Each marginal smooth term, fj,

is represented using Kj B-splines and is associated with a quadratic penalty matrix

Pj of order dj and a smoothing parameter gj which controls the smoothness of fj.

In matrix notation we have fj := Bjθj, where Bj is aN×Kj matrix of B-spline basis

function evaluations and θj is the Kj-vector of unknown spline coefficients. The

most common choices in practise are cubic B-splines and a second-order penalty. In

this case, Pj is rank Kj − 2 and contains integrated products of second-derivatives

of the B-splines

{Pj}m,n =
∫
Xj
B′′(j)m (x)B′′(j)n (x), m, n = 1, . . . , Kj,

where Xj is the range of the spline basis. The full model will be projected onto a

tensor sum of orthogonal subspaces. Each component in the new construction is

either unpenalized or has its own unique penalty that is interpretable in terms of
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the original model component functions. This is convenient because it will lead to

a mixed model representation where each random effect has a diagonal covariance

matrix independent of the other effects. Despite this simple penalty structure, we

will not simply shrink all coefficients as in a simple ridge regression, but instead

have multiple penalties interpretable in terms of function shape.

This penalty structure greatly simplifies computations in both frequentist and

Bayesian settings and is a feature not shared by other tensor product constructions,

such as Belitz and Lang [6], Lee and Durbán [56], Lee et al. [57], or Wood [126]. Typ-

ically in a Bayesian setup, an improper prior is used for the spline coefficients of

each smooth term π(θj) ∝ exp(−λjθTj Pjθj). Improper priors can be problematic

when trying to define Bayes factors. Additionally, tensor-product smooth terms

involving two or more covariates would have priors involving multiple smoothing

parameters.

For our construction, we begin as in Wood et al. [129] by performing an eigen-

decomposition of each marginal penalty Pj = UjDjUT
j ; j = 1, . . . , J , where

Uj is orthogonal and Dj is diagonal with dj zeros on the diagonal, Dj =

diag(dj1, dj2, . . . , djqj , 0, . . . , 0); dj1 ≥ · · · ≥ djqj > 0, where qj = Kj − dj. Letting

Un,j be the columns of Uj corresponding to the zero eigenvalues and Up,j be the

remaining columns, we define (bTj ,βT
j )T := UT

j θj, Xn,j := BjUn,j, Xp,j := BjUp,j,

and D+,j to be the largest submatrix of Dj with no zeros on the diagonal. For the

one covariate case, yi = f(xi) + ei, we arrive at the mixed model

y = Xnβ + Xpb + ε, ε ∼ NN(0, σ2IN), b ∼ Nqj(0, gD−1
+ ), (4.3)

with g := 1
λ
. By forming X̃p := BUpD−1/2

+ and b̃ := D−1/2
+ UT

p θ, (4.3) can be further

simplified to have random effect covariance matrix gIqj .

To construct tensor product interactions we use the box product, also known
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as the row-wise Kronecker product, which is defined for two matrices A1 and A2

of dimension n×m1 and n×m2, respectively as A1�A2 := A1 ⊗ 1Tm1 � 1Tm2 ⊗A2,

where ⊗ represents the Kronecker product and � denotes element-wise matrix

multiplication. Now given two marginal smooths decomposed as described in the

preceding paragraph, we can form the model matrix, M, for the tensor product

smooth in one of two ways

1. By forming M = [Xn,1�Xn,2 : Xp,1�Xn,2 : Xn,1�Xp,2 : Xp,1�Xp,2], where the

first box product contains the basis for the null space of the smooth and the

three remaining terms are the bases for three i.i.d. normal random effects.

2. As in 1), but instead forming the box products involving Xn,1 and Xn,2 using

each individual column of those matrices separately. Letting x(k)
n,j denote

the kth column of Xn,j, when d1 = d2 = 2 this becomes M = [Xn,1�Xn,2 :

x(1)
n,1�Xp,2 : x(2)

n,1�Xp,2 : Xp,1�x(1)
n,2 : Xp,1�x(2)

n,2 : Xp,1�Xp,2].

Construction 2) increases the number of variance components/smoothing param-

eters from three to five, but has the advantage of being fully scaling invariant.

This means that inferences about the smooth terms are not affected by arbitrarily

rescaling the covariates. See Wood et al. [129] for in depth discussion of this fact.

We called the term Xp,1�Xp,2 a range space-range space interaction and the terms

Xp,1�Xn,2 and Xn,1�Xp,2 null space-range space interactions.

A third covariate can be added by constructing Xn,3 and Xp,3 as described above

for the new covariate and then forming box products of Xn,3 (or the columns of

Xn,3 for construction 2.) with all the terms in M and also all box products of

Xp,3 with all the terms in M above. Additional covariates can be added in an

analogous manner. Higher order interactions can be ignored by dropping terms
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involving higher numbers of Xp matrices. For example, the third-order interaction

in a three covariate smooth can be ignored by dropping Xp,1�Xp,2�Xp,3 from M.

For interpretability, it is important to ensure that the constant function is always

part of the null space basis. If a null space that explicitly includes the constant

function is not obvious, further reparameterization of the null space to achieve

this is possible (Wood et al. 129). After this reparameterization, if we let X denote

the one component of M that involves only box products of the null space terms,

Xn,j’s, and use Zj’s to denote all other components (i.e. ones involving at least one

Xp,j), than we arrive at a mixed model in the standard form (4.1). The specific

case of FGAM will be demonstrated in the next section to make this more clear.

4.5 A Test for Linearity of FGAM

We now discuss how to implement the construction of the previous section for

FGAM. First reviewing notation, Bx will denote the NJ × Kx matrix of the x-

axis B-splines evaluated at vec(X) where X is the N × J matrix of observed

functional predictor values (N curves measured J times each). As should become

more apparent shortly, we must use dx ≥ 2 here in order to have the FLM nested

in FGAM. Choices of dx > 2 are both uncommon in practise and result in addition

variance components needing to be estimated if the fully invariant construction is

used. Choosing dt = 1 is possible, and perhaps worth exploring, but was not done

in this chapter in favour the more common choice dx = dt = 2.

Obtain the eigendecomposition of the marginal penalty for the x-axis, DT
xDx =

UxΛxUT
x = [Ux,r : Ux,f ]Λx[Ux,r : Ux,f ]T , with Ux,f containing the two eigenvectors

corresponding to the zero eigenvalues and Ux,r containing the others. Form Λx,+,
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the matrix Λx with the zero entries on the diagonal replaced with ones and then

form B∗x = BxUxΛ−1
x,+. The first Kx − 2 columns of B∗x, say Zx, form a basis for

the random effects of the marginal smooth (i.e. a basis for the range space of

the marginal penalty) and the last two columns, say Xx form a basis for the fixed

effects of the smooth. The marginal penalty matrix will become the identity matrix

of appropriate dimension except with its last two diagonal entries equal to zero;

denote this as I−. For the N × J matrix T of observations times, form Bt, the

matrix of t-axis B-spline evaluations, and obtain Λt,+, B∗t , Xt and Zt in the same

way as was done for the marginal smooth for x. Our design matrix for the tensor

product smooth results from taking box products of all the marginal bases

M = [Xx�Xt : Xt�Zt : Zx�Xt : Zx�Zt] .

The term Xx�Xt corresponds to the unpenalized, fixed effects part of the smooth,

and the three other terms are the random effects with each component having a

separate ridge penalty.

Let x = vec(X) and t = vec(T); we can re-parameterize the null space bases

as Xx = [1 : x], Xt = [1 : t], and Xx�Xt = [1 : x : t : x � t]. The function

F (x, t) is decomposed into an unpenalized, parametric part and three orthogonal,

nonparametric parts each subject to a different penalty

term︸ ︷︷ ︸
penalty

: F (x, t)︸ ︷︷ ︸
λt
∫

( ∂2
∂t2

F )2+λx
∫

( ∂2
∂x2 F )2

= β0 + β1x+ β2t+ β3x · t︸ ︷︷ ︸
unpenalized

+ f1(t) + xf2(t)︸ ︷︷ ︸
λ1[
∫

( ∂2
∂t2

f1)2+( ∂2
∂t2

f2)2]

+ g1(x) + tg2(x)︸ ︷︷ ︸
λ2[
∫

( ∂2
∂x2 g1)2+( ∂2

∂x2 g2)2]

+ h(x, t)︸ ︷︷ ︸
λ3
∫

( ∂4
∂x2∂t2

h)2

(4.4)

The fully scaling-invariant construction for the basis which results in five
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Basis for functions

Term of the form Penalty

Xt�Zt f1(t) + xf2(t)
∫

( ∂2

∂t2
f1)2 + ( ∂2

∂t2
f2)2

Zx�Xt g1(x) + tg2(x)
∫

( ∂2

∂x2 g1)2 + ( ∂2

∂x2 g2)2

Zx�Zt h(x, t) excluding previous blocks’ bases
∫

( ∂4

∂x2∂t2
h)2

Table 4.2: Description of penalized components of the tensor production construc-
tion (4.5).

smoothing parameters instead of three is

M = [Xx�Xt : Zx : Zt : x�Zt : Zx�t : Zx�Zt],

with F (x, t) decomposed as

term︸ ︷︷ ︸
penalty

: F (x, t)︸ ︷︷ ︸
λt
∫

( ∂2
∂t2

F )2+λx
∫

( ∂2
∂x2 F )2

= β0 + β1x+ β2t+ β3x · t︸ ︷︷ ︸
unpenalized

+ f1(t)︸ ︷︷ ︸
λ1
∫

( ∂2
∂t2

f1)2

+ xf2(t)︸ ︷︷ ︸
λ2
∫

( ∂2
∂t2

f2)2

+ g1(x)︸ ︷︷ ︸
λ3
∫

( ∂2
∂x2 g1)2

+ tg2(x)︸ ︷︷ ︸
λ4
∫

( ∂2
∂x2 g2)2

+ h(x, t)︸ ︷︷ ︸
λ5
∫

( ∂4
∂x2∂t2

h)2

Both of the above tensor product constructions are available in the mgcv package

using the t2 smooth class. The interpretation of each penalized component is

summarized in Table 4.2. Remembering that we must integrate w.r.t. t, it is clear

that t must be dropped from the null space basis and that Zt which corresponds

to functions of the form f1(t), must be dropped from M as well. Define X =

Xx�Xt, Z1 = x�Zt, Z2 = Zx�Xt, Z3 = Zx�Zt and the N × NJ matrix L =

J−1(IN ⊗ 1Tj ) containing the quadrature weights for the integration. We can write

our model as

y = θ0 +
∫
T
F (Xi(t), t) dt ≈ LXβ +

3∑
j=1

LZjbj + ε; (4.5)

bj ∼ N(0, σ2
j Iqj), j = 1, 2, 3;

ε ∼ N(0, σ2
eIN).
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Notice that this has the same form as Equation (1.1) in Greven et al. [37] and

Equation (5) in Wang and Chen [123]. We have q0 = 3, q1 = Kt − 2, q2 = 2(Kx −

2), and q3 = (Kt − 2)(Kx − 2). Referring to Table 4.2, we can see that variance

component σ2
1 corresponds to the random effect for the FLM and that testing H0:

FLM is the true model vs. H0: FGAM is the true model is equivalent to testing

H0 : σ2
2 = σ2

3 = 0 vs. H0 : σ2
2 > 0 and/or σ2

3 > 0 with one nuisance variance

component, σ2
1. As mentioned previously, testing two variance components being

zero simultaneously has received little attention in the literature in the mixed

model literature.

To overcome this difficulty we consider several different approaches. The first

approach is to do two tests each with one variance component being zero under

the null hypothesis, one nuisance variance component, and one variance component

fixed at zero under both hypotheses; and then to apply a Bonferroni correction to

account for the multiple testing. In the first test, σ3 is set to zero under both the

null and alternative hypotheses and we test σ2 for equality to zero. In the second

test, σ2 is set to zero under both hypotheses and we test σ3. The Bonferroni

correction is the simplest and most conservative commonly applied correction for

multiple testing. The idea is very simple, if an α level test is desired and one

has m tests, then one simply conducts each test at level α/m. This approach

is guaranteed to have a family-wise error rate (probability of one or more type

I errors) of at most α, but ignores any dependence between the tests and hence

can be conservative. Another possibility would be to assume a priori that σ2
2 =

σ2
3. Referring to Table 4.2, this assumption is difficult to interpret based on the

functional forms and different interpretation of the penalties corresponding to σ2

and σ3. However, it does place our testing problem in the simpler setting of testing

one variance component with one nuisance component.

84



Inspired by the Greven et al. [37] idea of forming pseudo-residuals based on an

initial REML estimation, an additional approach we have considered is to first

obtain REML estimates, say σ̂2 and σ̂3, of σ2 and σ3, respectively; and then form

γ̂ := σ̂2
2/σ̂3

2. If we assume that σ2
2 = γσ2

3 and replace γ by its estimate, then

our test of FLM vs. FGAM is reduced to testing σ3 = 0. However this, technique

did not offer any performance improvements over the already discussed approaches

and hence we do not consider it any further in the text.

4.5.1 A Test For No Effect In the Functional Linear Model

Before assessing whether an FLM or FGAM provides a better fit to the data,

one will want to determine whether the functional predictor has any effect on

the response at all. This is quite simple to test in our framework. By simply

dropping the random effects b2 and b3, we can test for no effect by considering

H0 : β2 = β3 = 0, σ1 = 0 versus H1 : β2 6= 0 or β3 6= 0 or σ1 > 0 (FLM is true).

The exact distribution of the LRT statistic for this test is known due to Crainiceanu

and Ruppert [17]. Note that a restricted likelihood ratio test is inappropriate here

because the fixed effects are different under the two hypotheses. One can also use

either a LRT or RLRT to test H0 : σ1 = 0 vs. H1 : σ1 > 0 which is a test that the

effect of X(t) is linear in t; Yi = β0 +LT{xi�(β1 +β2t)}. If one instead uses a first

order penalty for x and t, then a test for no effect is equivalent to testing σ1 = 0.

This proposal is similar to one recently considered in Swihart et al. [113] for the

penalized functional regression model of Goldsmith et al. [33]. Those authors first

perform an FPCA to estimate the predictor trajectories (as was done in Chapter 3)

and then estimate the coefficient function in the FLM using penalized splines with

a first-order difference penalty and different mixed model representation than the
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one considered here. It is also possible to test for a quadratic effect of the form∫
ζ(t)X2(t)dt if one uses a third order penalty for the marginal basis for x.

4.6 Bayes Factors For P-Spline ANOVA Models

In this section we develop Bayes factor approaches for testing for nonparamet-

ric effects in semiparametric regression models (including testing for linearity in

FGAM). For a prior for the random effects, we use generalizations of the g-prior

(Zellner 134) which is widely used in the Bayesian variable selection literature due

to its computational convenience.

We first discuss the choice of prior for the variance components in Section 4.6.1.

The two approaches we consider make use of different prior specifications for the

variance components as well as different priors for the random effects coefficients.

In Section 4.6.2, we extend the work of Maruyama and George [66] for linear models

to test for zero variance components in our penalized spline ANOVA model. In

Section 4.6.3, we consider a simpler approach that extends the classic work for

linear models of Zellner and Siow [135].

4.6.1 Choice of Priors For the Variance Components

In this section we briefly summarize a fraction of the rotund body of literature on

the usage of shrinkage priors for Bayesian model selection problems, which ties in

to the choice of prior distribution for scale parameters (variance components) in

hierarchical models.
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The g-prior is currently one of the most popular choices for model selection

in Bayesian linear models. For a linear model y|α,β, σ2 ∼ N(α1 + Xβ, σ2I), the

g-prior is β ∼ N(0, gσ2(XTX)−1) (Zellner 134) with g denoting a variance com-

ponent instead of a precision parameter. The choice of g has been found to be

crucial to the success of the fitting procedure. There is a rapidly growing body of

literature considering the use of this prior and various generalizations for variable

selection in high-dimensional Bayesian linear models. A small sampling of papers

includes Liang et al. [62], Saville and Herring [101], Polson and Scott [85], Maruyama

and George [66], Bayarri et al. [5], Celeux et al. [11], and Polson and Scott [87]. Note

that the vanilla g-prior will not shrink any coefficients completely to zero and there-

fore cannot completely remove terms from the model. To achieve this requires a

prior for the coefficients that includes a point mass at zero, a so called spike-and-

slab prior. Coupling a point mass at zero with the various g-priors mentioned

above is considered in Ley and Steel [58]. Those authors’ extensive simulation stud-

ies demonstrated the effectiveness of the Maruyama and George [66] prior on g for

performing model selection via Bayesian Model Averaging.

Nearly all work in the literature considers only using one g-prior per model.

This is usually not desirable for nonparametric regression if we think of each g

as a smoothing parameter controlling the complexity of the regression functional

corresponding to the random effect. Preferable would be a separate g-prior for

each regression functional so that each functional can have differing amounts of

smoothing. One exception is the work of Rouder et al. [98], which is quite similar

to the second approach we consider. Those authors allow for a separate g-prior to

be placed on each random effect in a classical ANOVA model. They make use of

the Zellner and Siow [135] g-prior arguing that it is more appropriate for categor-

ical covariates than the hyper-g/n prior advocated by Liang et al. [62] to achieve
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consistency of the Bayes factor. Two papers have recently appeared that examine

the use of these priors for additive models. One is Sabanés Bové et al. [100], which

uses a very different approach from the one we will take and does not examine

tensor product smooths. In that paper, the authors use a different mixed model

representation from the one considered here, integrate out the random effects, and

place a generalized g-prior on the parametric part of each additive component in

the model. The other is Shang and Peng [105] which considers the ultra-high dimen-

sional setting where the number of covariates grows exponentially with the sample

size. Both approaches use a spike-and-slab prior similar to the ones considered in

Ley and Steel [58] to select covariates in the additive model.

Testing variance components using Bayes factors has previously been considered

in Pauler et al. [82]. Chen and Dunson [13] consider the problem of random effect

selection in linear mixed models, but do not make use of g-priors or consider

Bayes factors. They too reparametrize the random effects, but using a Cholesky

factorization instead of an SVD of the covariance matrix and then place a zero-

inflated half-normal distribution on the resulting variance components.

Both methods we use can be expressed in the form

y|β,b1, . . . ,bj, σ2 ∼ NN(Xβ +
J∑
j=1

Zjbj, σ2IN) (4.6)

p(β) = 1(−∞,∞)(β)

bj|gj, σ2 ∼ Nqj{0, σ2Ψj(gj)}, j = 1, . . . , J

p(σ2) = σ−21(0,∞)(σ2)

p(gj) := π(gj), j = 1, . . . , J ;

where π(gj) denotes the prior for gj, which will be detailed shortly. The two

approaches differ based on the form of the Ψ they use and on the form of the prior
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used for each element of g = (g1, . . . , gJ)T . Notice that the priors on β and σ2 are

both improper because we are not interested in hypotheses about either component

for our current problem. Typically improper priors give rise to Bayes factors that

are not well-defined. By first considering the proper priors p(β;hβ) = 1
2hβ

1(−hβ ,hβ)

and p(σ2;hσ) = σ−2

2 log hσ ; h−1
σ < σ2 < hσ and then letting hβ, hσ → ∞ when

computing the required marginal densities, we obtain well defined Bayes factors

(see; Maruyama and George 66). This approach is reasonable because σ2 and β

appear in every model we would want to test in this framework. One reason for

not specifying a proper prior on the fixed effects β is because for the moment

we are only interested in tests not involving the fixed effects. If one did want to

consider a test involving the fixed effects, say to test for no effect in the FLM as

outlined in Section 4.5.1, one could try placing an additional g-prior on the fixed

effects.

While the Rouder et al. [98] approach is simpler, it requires approximating two

integrals of dimension Ji each, where Ji is the number of non-zero variance compo-

nents in the model under hypothesis Hi, i = 0, 1. For linear models, the setup of

Maruyama and George [66] allows for closed-form expressions for the Bayes factors

to be obtained due to its use of a data-driven generalization of the g-prior. Their

approach can accommodate the case of more parameters than data (p > N), but

that case will not be considered in this dissertation.
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4.6.2 An Approach Using Type IV Beta Priors

The prior used for g by Maruyama and George [66] is known as a Pearson Type VI

or beta-prime distribution

p(gj) =
gbj(1 + gj)−(a+b+2)

B(a+ 1, b+ 1) ; gj > 0; a, b > −1; j = 1, . . . , J (4.7)

with a and b being hyperparameters to be specified and B(·, ·) denoting the Beta

function. This prior has received considerable attention in the literature, with

several different suggestions for the hyperparameters a and b. Polson and Scott [86]

argues that this prior should replace the inverse-Gamma distribution as the default

choice for variance components in hierarchical models. Smaller values of a result

in heavier tails for the distribution of random effects; whereas smaller values of

b make the distribution more concentrated near the origin (Polson and Scott 86).

The choice of b used by Maruyama and George [66] turns out to be very convenient

for computational reasons, but somewhat unusual because it depends on the size

of the model (for us the dimension of the corresponding random effect vector).

The issues with the use of inverse-Gamma priors for variance components are well

documented (e.g., Gelman 31).

Temporarily ignoring the dependence on j, in the standard g-prior framework,

the matrix Ψ would be g(ZTZ)−1, or as recommended by Liang et al. [62], the scaled

version g(ZTZ/N)−1. For linear models, the usual g-prior has the undesirable effect

of putting stronger prior information on components that have been estimated with

higher precision. It is for this reason that Maruyama and George [66] proposed

using the diagonal matrix Ψ with diagonal entries ψi = 1
d2
i
[νi(1 + g) − 1], where

d2
i , d2

1 > · · · > d2
q, are the eigenvalues from an eigendecomposition of ZTZ and

νi = d2
i /d

2
q, and we denote the eigenvectors by ui. Maruyama and George [66]
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define

R2 =
q∑
i=1

(uTi r)2

rT r
and Q2 =

q∑
i=1

(1− ν−1
i )(uTi r)2

rT r
, (4.8)

where r = y − ȳ1. For those authors, who considered only multivariate linear

models, R2 was the usual coefficient of determination. In our case r = {I −

X(XTX)−1XT}y, and R2, Q2, ui, and νi, are all dependent on their corresponding

random effect, bj, and effect basis Zj, j = 1, . . . , J . Thus, all those terms gain an

index, j. Detailed calculations are provided in Appendix B.1.

In Appendix B.1 it is also shown that our marginal density is

MM(y) = k
J∏
j=1

1−
J∑
j=1

Q2
j

(N−q0)/2

FA (α, b1 + 1, . . . , bJ + 1, α, . . . , α; υ1, . . . , υJ) ,

(4.9)

where υj := R2
j−Q

2
j

1−
∑J

j=1 Q
2
j

, α := N−q0
2 , and

k = Γ[(N − q0)/2] · |XTX|−1/2(π1/2rT r)−N+q0
J∏
j=1

B(bj + 1, a+ qj/2 + 1)
B(a+ 1, bj + 1)

qj∏
l=1

ν
−1/2
jl .

FA denotes one of Lauricella’s hypergeometric series [55], which is defined as follows

FA(a, b1, . . . , bn, c1, . . . , cn;x1, . . . , xn) =
∞∑

i1,...,in=0

(a)i1+···+in(b1)i1 · · · (bn)in
(c1)i1 · · · (cn)ini1! · · · in! x

i1
1 · · ·xinn ,

where (a)n denotes the rising factorial (a)n = Γ(a + n)/Γ(a). In one variable, all

Lauricella’s series simplify to Gauss’ hypergeometric function and in two variables,

FA is equivalent to Appell’s function F2.

The series FA converges for ∑n
j=1 |xj| < 1. We know υj > 0 (xj > 0) because

R2
j −Q2

j > 0. Considering that R2 for the full model is bounded by one and that

we have partitioned the model into orthogonal components and each R2
j is a semi-

partial R2 for one of the orthogonal components, it seems reasonable that the sum
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of the R2
j ’s should be bounded by one. This has been the case in the small number

of numerical experiments we have done.

From e.g., Srivastava and Karlsson [110], Page 285, Equation (35); FA can be

represented by a one-dimensional Laplace type integral as follows

FA(a, b1, . . . , bn, c1, . . . , cn;x1, . . . , xn) = 1
Γ(a)

∫ ∞
0

e−tta−1
n∏
i=1

1F1(bj, cj;xjt)dt,

(4.10)

where 1F1(a, b;x) := ∑n
i=1

(a)ixi
(b)ii! is Kummer’s confluent hypergeometric function

which can be efficiently approximated. Lauricella’s function FA appears occa-

sionally in literature on performance analysis of wireless communications systems

(e.g., Annamalai et al. 2). Several other applications in statistics and physics can be

found in Exton [21], Ch. 7 and 8. An efficient method for computing (4.10) appears

in Shi and Karasawa [107]. The approach is based on semi-infinite Gauss-Hermite

quadrature with weights given by Steen et al. [111]. This approach was shown to

offer less approximation error than the standard approach for approximating inte-

grals on the positive real line, Gauss-Laguerre quadrature.

For the two variance components case, we have (Srivastava and Karls-

son 110 , p. 305, Eq. 107)

FA (α, b1 + 1, b2 + 1, α, α; υ1, υ2) = (1− υ1)−b1−1

(1− υ2)b2+1

× F
(
b1 + 1, b2 + 1, α; υ1υ2

(1− υ1)(1− υ2)

)
.

Thus, a Bayes factor where each model has either one or two variance components

reduces to computing a ratio of Gauss’ hypergeometric functions. A method for

accurately computing these ratios using continued fraction expansions is given in

Wand and Ormerod [118].
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As an example, the Bayes factor for testing H0 : σJ = 0 vs. H1 : σJ > 0 is

BF10 = B(bJ + 1, a+ qJ + 1)
B(a+ 1, bJ + 1) (1−QJ)(N−q0)/2

× F (α, b1 + 1, . . . , bJ + 1, α, . . . , α, υ1, . . . , υJ)
F (α, b1 + 1, . . . , bJ−1 + 1, α, . . . , α, υ1, . . . , υJ−1)

qJ∏
l=1

ν
−1/2
Jl

Other tests have a similar form.

In Appendix B.2, we derive a slightly different form for the marginal density

for FGAM by integrating w.r.t. each gj individually. The result is a univariate

integral involving only one hypergeometric function

MFGAM(y) = k2B(a+ q2/2 + 1, b2 + 1)
B(a+ 1, b3 + 1)

∫ 1

0
ub3

3 (1− u3)a+q3/2c
a+q1/2+1
2

× (Q2
1 −R2

1 + c2)−b1−1
(

1− R2
2 −Q2

2
c2 +Q2

1 −R2
1

)a+q1/2+1

× F
[
b2 + 1, a+ q1/2 + 1, N − q0

2 ; (R2
2 −Q2

2)(Q2
1 −R2

1)
c2(c2 +Q2

1 −R2
1 +Q2

2 −R2
2)

]
du3

= k2B(a+ q2/2 + 1, b2 + 1)
B(a+ 1, b3 + 1)

∫ 1

0
ub3

3 (1− u3)a+q3/2c
a+q1/2+1
2

× (Q2
1 −R2

1 + c2)−(N−q0)/2
(
c2 +Q2

1 +Q2
2 −R2

1 −R2
2

)a+ q1
2 +1

× F
[
b2 + 1, a+ q1

2 + 1, N − q0

2 ; (R2
2 −Q2

2)(Q2
1 −R2

1)
c2(c2 +Q2

1 −R2
1 +Q2

2 −R2
2)

]
du3,

where k2 = k1B
−1(a + 1, b1 + 1)B−1(a + 1, b2 + 1)B(b1 + 1, a + q1/2 + 1) with

k1 = Γ[(N − q0)/2] · |XTX|−1/2(π1/2rT r)−N+q0
∏J
j=1

∏qj
l=1 ν

−1/2
jl . This integral can be

approximated by, for example, Simpson’s rule. However, hypergeometric functions

can be difficult to approximate for argument values near one (Liang et al. 62).

Gauss’s hypergeometric function and Kummer’s confluent hypergeometric function

can both be computed in R using the package gsl (Hankin 41).

Under the FLM, the marginal density is given by

MFLM(y) = k1B(b1 + 1, a+ q1/2 + 1)
B(a+ 1, b1 + 1) (1/3−Q2

1)(N−q0)/2
(

1 + Q2
1 −R2

1
1/3−Q2

1

)−b1−1

.
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It follows that the Bayes factor for testing H0 : FLM vs. H1 : FGAM is given by

B10 = MFGAM(y)
MFLM(y) =

B(a+ q2/2 + 1, b2 + 1)∏3
j=2

∏qj
l=1 ν

−1/2
jl

B(a+ 1, b2 + 1)B(a+ 1, b3 + 1)

× (1/3−Q2
1)−(N−q0)/2

(
1 + Q2

1 −R2
1

1/3−Q2
1

)b1+1 ∫ 1

0
ub3

3 (1− u3)a+q3/2c
a+q1/2+1
2

× (Q2
1 −R2

1 + c2)−(N−q0)/2
(
c2 +Q2

1 +Q2
2 −R2

1 −R2
2

)a+ q1
2 +1

(4.11)

× F
[
b2 + 1, a+ q1

2 + 1, N − q0

2 ; (R2
2 −Q2

2)(Q2
1 −R2

1)
c2(c2 +Q2

1 −R2
1 +Q2

2 −R2
2)

]
du3,

where c2 = u3(Q2
3 −R2

3) + 1−∑3
j=1 Q

3
j .

4.6.3 An Approach Using Inverse-Gamma Priors

In this section, we do not use a data-dependent specification for the prior covari-

ance for the random effects and simply use bj ∼ N(0, gjσ2Iqj). An advantage of

this is that this is our original prior/penalty from Section 4.4.2 and thus we have

not changed the interpretation of our penalties in terms of function shape from

that section. The downside of this is that we will have to numerically integrate

over each gj to obtain marginal densities. In their influential paper on Bayesian lin-

ear model selection, Zellner and Siow [135] proposed the use a multivariate Cauchy

density for the marginal distribution of the coefficients being tested in a multiple

linear regression. The use of the Cauchy marginal implies that the g parameter has

an inverse-gamma distribution (Liang et al. 62). In an attempt to extend their ap-

proach to our setting, we choose π(gj) = Inv-Gamma(1/2, 1/2) = Inv-χ2(1). The

derivation of the marginal densities follows along the same lines as the derivation

in Appendix B.1 for the proposal of the previous section, up to the integration

w.r.t. g. For this reason, we omit most of the details.

To give the form of the marginal density for a model with J random effects,
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we first define the diagonal matrix GJ = diag(g11q1 . . . , gJ1qJ ) and the covariance

matrix VJ = ZT{J}Z{J} + G−1
J . The marginal density is then given by

MJ(y) =
∫
RJ+

Γ{(N − q0)/2}
π(N−q0)/2

(rT r− rTZ{J}V−1
J ZT{J}r)−(N−q0)/2

|XTX|1/2|GJ |1/2|VJ |1/2 π(g1) · · ·φ(gJ)dg,

(4.12)

where RJ
+ denotes the upper half-space of J-dimensional Euclidean space, r =

y − X(XTX)−1XTy, and Z{J} = [Z1 : Z2 : · · · : ZJ ]. Now for a null model with

J − 1 variance components, our Bayes factor is B10 = MJ(y)/MJ−1(y). This is

similar to the Bayes factor used in Rouder et al. [98], but those authors only consider

classical ANOVA models and thus have categorical Z matrices.

4.7 Testing FLM Versus FGAM: Simulation Study

In this section we study the performance of our proposed tests for linearity of

FGAM on simulated data for two different setups. First, in Section 4.7.1, we

generate the response variable using a convex combination of an FLM and an

FGAM in the functional predictor. This is done to assess the size of the departure

from linearity that our tests can detect in a way that is interpretable in terms of

the original models. In Section 4.7.2, we assess empirical type I error rates and

power for our tests by generating the response from the mixed model in Section 4.5

for several different values of the variance components and compare performance

with tests that know the value of the nuisance parameters.

A summary of the testing procedures we consider in this section can be found

in Table 4.3 along with a reference to their introduction point in the disserta-

tion. Not all testing procedures were considered in both simulation sections; this

is also indicated in the table. We consider one method not previously introduced
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Abbr.
Name Section Description
Bonferroni 4.7.1,

4.7.2
Two separate pseudo-RLRTs for each non-FLM variance
component for SSANOVA-like parameterization from
Section 4.5 with Bonferroni correction

Augment 4.7.1 RLRT using usual tensor product parameterization and
augmented data; see Section 4.4.1

BF 4.7.1 Bayes factor approach with inverse-gamma priors on
variance components; see Section 4.6.3

GPGMFB 4.7.1 Cramér-von Mises test for goodness of fit of FLM pro-
posed in García-Portugués et al. [30]

EqualVC 4.7.1,
4.7.2

pseudo-RLRT using SSANOVA-like parameterization
from Section 4.5, but assuming σ2 = σ3

DCOR 4.7.2 Using distance correlation t-test for independence from
Székely and Rizzo [114]

KnownSig1 4.7.2 “quasi-Oracle” test that knows the true value of the ran-
dom effects corresponding to FLM component in (4.5)

Table 4.3: Description of all methods considered for testing for linearity in the
simulation studies.

in the thesis that has seen little attention for functional data, but seems poten-

tially promising: the distance correlation of Székely et al. [115]. Distance correlation

appears well-suited for functional regression because it can measure independence

between two stochastic processes in differing, arbitrary dimensions and is equal

to zero if and only if the two processes are independent. Recently the same au-

thors have developed a test especially suited for high-dimensional random vectors

(Székely and Rizzo 114). If the FLM is a good fit to the data, then the residuals

and the functional predictor should be independent. Thus, for comparison we con-

sider computing the distance correlation between the functional predictor and the

residuals from an FLM fit to the data, and then using the proposed test of Székely

and Rizzo [114]. The test can be conducted in R using the package energy (Rizzo

and Szekely 96). The use of distance correlation for model selection in SSANOVA

models for multivariate data has been explored by Kong et al. [52].
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We also consider the recently proposed method of García-Portugués et al. [30].

This is the only work besides ours we our aware of that focuses on a null hy-

pothesis of the FLM being true. They use a Cramér-von Mises statistic and use

the bootstrap to approximate the null distribution of the statistic. The method

relies on an assumption that the coefficient function can be expanded in a finite

number of basis functions without penalization. Their method is implemented in

the R package fda.usc (Febrero-Bande and Oviedo de la Fuente 25). Due to sin-

gularities in the model matrix when estimating an FLM using their package, we

were unable to get their method to work for more than four basis functions for the

functional coefficient for any of our simulations. This seems to be due to the lack

of regularization in the method. We therefore only report results for the four basis

function case for this method. We label this method GPGMFB.

RLRTs, for the methods based on them, are computed in R (R Core Team 88)

using the package RLRsim (Scheipl et al. 102). The package requires fitted model

objects for the model under both hypotheses, as well as a fit to the data with nui-

sance variance components equal to zero. These fits are obtained using the package

lme4 (Bates et al. 4). For method Augment, the REML estimation procedure used

to estimate FGAM and the FLM is due to Wood [128] and available in the package

mgcv (Wood 126). The code used to estimate Bayes factors is an extension of code

available in the package BayesFactor (Morey and Rouder 72). At the time of this

writing, that package can only be used for a model with one variance component.

97



4.7.1 True Model as Convex Combination of FLM and

FGAM

We consider two sample sizes, N = 100, 500; three significance levels, α =

0.1, 0.05, 0.01; and three values for the number of basis functions for each axis,

Kx = Kt = 5, 8, 10. Data will be generated in a similar manner to Section 3.5.

We fit each model to 500 simulated data sets. The true functional covariates

are given by X(t) = ∑4
j=1 ξjφj(t), with ξj ∼ N(0, 8j−2) and {φ1(t), . . . , φ4(t)} =

{sin(πt), cos(πt), sin(2πt), cos(2πt)}. Each functional predictor was observed at 30

equally-space points. To generate the response, we take a convex combination of

a bivariate function linear in x and one nonlinear in x, F1(x, t) = 2x sin(πt), and

F2(x, t) = 10 cos
(
−x

8 + t
4 − 5

)
, with t = [0, 1]. The response is given by

Yi =
∫ 1

0
λF1{Xi(t), t}+ (1− λ)F2{Xi(t), t}dt+ εi,

with εi ∼ N(0, 1) and 0 ≤ λ ≤ 1. The constants in F1 and F2 were chosen so

that each surface contributed roughly equally to the signal for each generated data

set (prior to multiplication by λ). Both true surfaces along with some generated

functional predictors are shown in Figure 3.2. Note that the figure additionally

displays sparse, noisy measurements of the functional predictor which applied for

the simulation study of the previous chapter, but not the current one.

The results for this simulation study are summarized in Figure 4.1 where for

each of our proposed tests we plot the proportion of the 500 simulations where

the null hypothesis is rejected by (1 − λ). We use 1 − λ so that zero on the

x-axis corresponds to the null model (FLM) being true. Each panel contains

the results for the three different values for the number of basis functions, with

different colours representing each. Different column panels correspond to different
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sample sizes and different panel rows correspond to different significance levels for

the hypothesis test. For the Bayes factor approach, we used Table 4.1 as our

guideline for assessing significance. To facilitate comparisons with the frequentist

methods and as an affront to Bayesians everywhere, we mapped positive evidence

as corresponding to a p-value < 0.1, strong evidence to a p-value < 0.05, and very

strong evidence to a p-value < 0.01.

Since the values in the plot when λ = 1 can be difficult to distinguish across

methods, Figure 4.1 also contains a table which gives the proportion of rejections

when λ = 1 (i.e. the observed type I error or false discovery rate), which we denote

α̂. The reported values in the table are the α̂’s averaged over the two sample sizes

and three values for the number of basis functions. We see that the augmented

data approach of Section 4.4.1 turns out to not give reasonable results, having a

far too high number of false discoveries. The EqualVC method is able to achieve a

type I error rate fairly close to the nominal level and also has the highest power of

any of the methods not including the sorry Augment method. Method Bonferroni

with is seen to be conservative, as expected, though not nearly as conservative as

the Bayes factor method. GPGMFB has lower power and observed type I error

rate further from the nominal level than method EqualVC, but is less conservative

than Bonferroni and BF. Our choice for the mapping of Bayes factors to p-values

seems to be quite poor.

There appears to be little effect on any of the methods as the number of ba-

sis functions change, with the exception being the BF method for the small basis

function, small size setting. Note that the choice of Kx = Kt = 5 results in a

random effect vector which is only of dimension three. This is quite small and

is difficult for lme4 to estimate. We note that lme4 would frequently (correctly)
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Figure 4.1: Proportion of rejected null hypotheses for various test levels (α), number of
basis functions (Kx,Kt), sample sizes (N), and λ values for each testing method under
consideration. See the text for more description.

estimate variance components to be zero in the λ = 1 case (when the FLM is

true). When this happens, RLRsim cannot conduct an RLRT. When this occurred

for method EqualVC, the results in Figure 4.1 include these cases as failures to

reject the null hypothesis. Similarly, when both fitted models under the two al-

ternatives had estimated zero variance components for method Bonferroni, which

involved conducting two tests, these cases were counted as failures to reject. More

problematic are cases where lme4 incorrectly estimates the variance component to

be zero when fitting the null model or estimates σ2 or σ3 to be zero when fitting

the alternative model and λ < 1. This happened infrequently, with the slight ex-

ception being values of λ close to 0.5 for method Bonferroni and EqualVC. This

is the cause of the slight downward bend at the right end of the power curves for

those methods plotted in Figure 4.1. This could be the result of identifiability

issues as the signals corresponding to the FLM and FGAM become roughly equal.
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4.7.2 True Model as SSANOVA-like Mixed Model

We now change how the response is generated so that it comes from the mixed

model (4.5). The functional predictors are generated in the same manner as

the previous section. For a given simulated sample of N curves, the response

is formed as follows. First, the Section 4.5 parameterization is used to form the

bases X, Z1, Z2, and Z3. Next, the random effect vector for the nuisance variance

component corresponding to the FLM term (see Table 4.2) in the construction

is drawn as b1 ∼ N(0, Iq1) and the two random effects vectors corresponding to

non-FLM terms are drawn as bj ∼ N(0, σ2
j Iqj); j = 2, 3. The response is than

given by

Y = Xβ +
3∑
j=1

Zbj + ε,

where ε ∼ N(0, IN) and β = (1, 0.01, 0.01)T .

Referring to Table 4.3, note that the testing procedures we are comparing have

changed for this section. While methods Bonferroni and EqualVC remain, we do

not consider the method Augment which was not able to satisfactorily detect the

FLM in the previous section, and we also do not use method BF. Instead, to better

assess the performance of method Bonferroni, we consider a “quasi-oracle” test that

knows the true value of the nuisance random effects vector for each simulation. In

more detail, the pseudo-residuals used as inputs to the pseudo-RLRTs for this

method are Y − Z1b1, for the true b1 instead of its prediction using REML. The

method still tests σ2 and σ3 separately and uses a Bonferroni correction, but with

no nuisance variance component and only one variance component to test at a

time, we are in exactly the framework of Crainiceanu and Ruppert [17], where the

distribution of the test statistic is known and easily simulated from. We label this

method “KnownSig1”. The other procedure considered is the distance correlation
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approach described earlier, which we label “DCOR”.

Note also that changing the number of basis functions with this data generation

scheme changes the dimension of the random effects in the true model. We can

perhaps gain some insight into the performance of pseudo-RLRTs for penalized

spline mixed models as the dimension of the random effects grow. The values

of σ2
j j = 2, 3; considered are σ2

j = (0, 0.04, 0.1, 0.25, 0.5, 0.75) for N = 100 and

σ2
j = (0, .004, .04, .14, .2, .3) when N = 500. Of particular interest will be how

much method EqualVC suffers for assuming that σ2 = σ3 as that assumption

becomes further and further from the truth.

As in the previous section, we generate 500 data sets for each simulation setting

and report the proportion of times each method rejects the null hypothesis that the

FLM is the true model. The empirical power of the proposed tests for significance

level α = 0.05 is plotted in Figure 4.2. Each panel corresponds to a different

combination of sample size and number of basis functions and contains one point for

each test for each combination of (x = σ2
2, y = σ2

3). Larger point sizes correspond

to a larger proportion of rejected null hypotheses and different colours differentiate

the different methods. The points have been jittered slightly to distinguish the four

testing procedures at each (x = σ2
2, y = σ2

3) grid point.

The method EqualVC appears to be the most powerful of the four tests for

this study. We see similar levels of disparity between EqualVC and Bonferroni

as in the simulation study of the previous section. The DCOR method is seen to

be least powerful here. It is promising that method EqualVC for the most part

outperforms the method that knows the nuisance random effect. We can also see

that Bonferroni is competitive with KnownSig1 for moderate to large values of σ2
1
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Figure 4.2: Proportion of rejected null hypotheses at α = 0.05 over 500 simulations for a
grid of several values of σ2

2 and σ2
3. The points have been jittered in order to distinguish

differences between the methods. See the text for more description.

and σ2
2.

It is clear that nonzero σ2 and σ3 become easier to detect for all four methods

as the number of basis functions increases. Comparing the top left and bottom

right quadrants of any panel, we see it is much easier to detect σ3 being non-zero

when σ2 is small or zero than vice versa. Note that the relation between the

dimension of b2 and b3 in this setup with Kx = Kt and second-order penalties is

q3 = q2
2. We also see that method EqualVC does not seem to lose its advantage

in power over the other methods when one variance component is non-zero while

the other is zero. It must be noted however, that pseudo-RLRTs for EqualVC

could not be performed for a large proportion of the simulations when at least

one of the variance components was zero or very near zero. This was due to zero
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variance component estimates being returned by lme4 and was especially true for

the small σ2 cases when the number of basis functions for each axis was five. As

was mentioned, the use of Kx = Kt = 5 results in a random effect which is very

difficult for lme4 to reliably estimate. The problem was greatly reduced when the

number of basis functions went up to ten.

While the zero estimates are desirable when both σ2 and σ3 are zero, it is

important to be able to detect the cases when only one of the two are zero. If

one wants to double-check a zero variance component estimate returned by lme4

when using EqualVC, method Bonferroni is ideally suited for this because it tests

each component separately. When lme4 estimates say, σ2 to be zero, the test for

σ3 being zero is still conducted so that the null hypothesis that the FLM is true

can still be rejected if there turns out to be significant evidence that σ3 is nonzero

with σ2 set to zero. The proportion of simulations where both RLRTs could not

be conducted for method Bonferroni was similar to the previous section. Another

possibility is to use a parametric bootstrap as suggested by Pinheiro and Bates [84].

The type I error rates varied little as either the sample size or number of basis

functions changed. For this reason, we simply report the observed values averaged

over the different settings for those parameters. For α = 0.05, the empirical type

I error rate for Bonferroni was 0.021, 0.046 for EqualVC, 0.000 for DCOR, and

0.023 for KnownSig1. Given how close its rate is to the nominal level and its strong

power performance compared to the other methods in both simulation sections,

we recommend using the EqualVC method which assumes a priori σ2 = σ3 and

then conducts a single pseudo-RLRT using the Greven et al. [37] approach. We

recommend the Bonferroni method or a Bayes factor approach be used as additional

checks for nonlinearity for the occasional cases where lme4 estimates zero variance
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components that prevent EqualVC from conducting the necessary pseudo-RLRT.

4.8 Analysis of Emissions Data

In this section we apply our proposed procedures to study the quantities of various

pollutants in truck exhaust emissions. The data come from chassis dynamometer

emissions readings from the Coordinating Research Council E55/59 emissions in-

ventory program (Clark et al. 14). The goal of the study was to assess particulate

matter emissions in heavy-duty trucks in California. Vehicles were tested in a lab

setting designed to mimic everyday driving conditions. Particulate matter was

captured using 70 mm filters on the dilute exhaust. For each sample a truck was

subjected to one of four driving cycles; for example, cruising at highway speeds or

stop-and-go city driving. For our application, we wish to predict the logarithm of

particulate matter at the end of 40 seconds of driving using the speed and/or accel-

eration trajectories over the 40 seconds. For simplicity, we have down-sampled the

data to avoid temporal dependence between response samples. Figure 4.3 plots

both the original velocity data and estimated accelerations for all trucks in the

data grouped according to driving cycle.

In the subsection that follows, we analyze the fit of the FLM to these data

using our proposed tests for linearity. After that, we compare FLM and FGAM

out-of-sample predictive performance for this data set and also compare predictive

performance of the SSANOVA-like parameterization discussed in Section 4.5 with

the parameterization used in Chapter 2.
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Figure 4.3: Speed and acceleration trajectories over forty seconds for each truck in the
emissions study grouped according to velocity pattern (driving conditions).

4.8.1 FLM Fit Assessment

Leaving the finer details of our fitting procedures to the next section, we now

discuss some diagnostics for assessing the fit of both the FLM and the FGAM

including use of our proposed testing procedures. We consider predicting particu-

late matter using vehicle acceleration as the functional predictor and also include

a categorical covariate for the driving cycle. Some residual plots for an FLM fit

to the entire data set using tuning parameters that had been chosen to optimize

performance for the next section are given in Figure 4.4. The top row of plots

shows the residuals grouped according to the driving cycle covariate and the bot-

tom shows the residuals plotted against the predicted value and also a normal Q-Q

plot of the residuals. We can see a very strong correlation between the residuals

and the response and also that the variance of the residuals is not constant across

the driving cycle factor. The Q-Q plot indicates non-normality of the residuals.

106



Figure 4.4: Residual plots for an FLM fit with truck acceleration as the functional
predictor: a) plots the residuals grouped by driving cycle, b) plots residuals vs. predicted
value, and c) is the normal Q-Q plot.

The p-value for the Shapiro-Wilk test for normality of the residuals was < 10−6.

This suggests that FLM is a poor fit for this data. To assess this more formally, we

consider the proposed tests of Section 4.5 and Section 4.6.3. Using the procedure

that conducts one RLRT after assuming σ2 = σ3 in the SSANOVA-like formulation

of FGAM (see (4.2)), we obtain a p-value ≈ 0. This very strongly suggests the

FLM is not adequate here. We also obtain a p-value that is zero to machine preci-

sion using the method involving two separate RLRTs for each non-FLM variance

component with a Bonferroni correction. The Bayes factor using the Zellner-Siow

prior for the variance components was approximately 2023, indicating extremely

strong evidence the FGAM is to be preferred (recall Table 4.1). The results remain

overwhelming regardless of the number of basis functions used. As a final check,

we can assess the independence of the residuals using the distance correlation t-

test (Székely and Rizzo 114). We obtain a p-value that again is zero to machine

precision.
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Figure 4.5: a) Residuals vs. sample grouped by driving cycle for FGAM fit with accel-
eration trajectories for predictors, and b) Residuals vs. response.

Finally, the residual plots for an FGAM fit to the data using the basis construc-

tion from this chapter can be seen in Figure 4.5. We can see that the magnitude

of the residuals has gone down and that all three plots seem to be less in violation

of the model assumptions than the FLM fit. The variance of the residuals also

appears to be more constant across driving cycles. The p-value for the distance

correlation t-test increased to 0.15, failing to find evidence that the residuals and

functional predictor are not independent.

Figure 4.6 shows contours of the estimated surface obtained by using all 157

samples and the acceleration curves as predictors. The surface was estimated

using lme4 (Bates et al. 4). Also plotted are the individual components of the

basis construction of Section 4.4.2; the unpenalized component, along with the

three penalized components (see (4.2)). The marginal bases for the x and t axes

were both of dimension eight. Interestingly, the variance component for the FLM
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Figure 4.6: Contours of estimated surface, F̂ (x, t), and components of FGAMM fit
from using acceleration trajectories as predictors. The second panel is the parametric
component of the fit, third is the component parametric in x and nonparametric in t,
fourth vice versa, and finally f̂(x, t) is nonparametric in both and subject to a fourth
order penalty.

portion of the fit was estimated to be very close to zero in this case.

The FLM fairs only marginally better if the truck speeds are used as the func-

tional predictor. We omit the diagnostic measures, but the out-of-sample predic-

tion performance using either covariate or both is examined in the next section.

4.8.2 Out-of-Sample Prediction of Particulate Matter

As further confirmation that the FGAM provides a better fit to this data than the

FLM, we considered out-of-sample prediction of the log-particulate matter. We

also compare the two different basis constructions for the tensor product surface

in our model: the Chapter 2 construction (FGAM) and the construction from this
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chapter (FGAMM). We also fit the fully nonparametric kernel estimator of Ferraty

and Vieu [29] from 2.9. We considered fitting one functional predictor models using

the truck velocities and the accelerations, as well as models including both func-

tional covariates at once. Since multiple functional predictors or scalar covariates

do not seem to be implemented for the model in Ferraty and Vieu [29], we could

not consider the model with both functional predictors for that method. For this

reason, also we did not include a categorical predictor for the driving cycle for

any of the models. Including the categorical predictor for the FLM and FGAM

methods had no effect on the results.

For FLM, FGAM, and FGAMM, smoothing parameters were chosen using

REML. The nonparametric kernel estimator was fit using code from the au-

thors, which includes automatic bandwidth selection and can be obtained from:

http://www.math.univ-toulouse.fr/staph/npfda. Several different basis di-

mensions were considered for both the FLM and FGAMs. Results varied little as

the number of basis functions changed for each of the methods, so for compact-

ness we only report the values that produced the lowest root-mean-square error

(RMSE) averaged over the different predictors for each method. For the FLM this

was ten basis functions for the functional coefficient, for FGAM this was six basis

functions for both axes, and for FGAMM this was ten basis functions for each

axis for the one functional predictor models and seven basis functions for the two

predictor model. Both the FGAM and the FLM can be fit in R using the refund

package (Crainiceanu et al. 16). The underlying estimation is handled by the R rec-

ommended package mgcv (Wood 128). For FGAMM, the variance components are

estimated by the package lme4 (Bates et al. 4). The data was randomly divided so

that 105 samples (≈ two thirds of the data) were using for training the models and

the remaining samples were used for testing. Boxplots of the RMSEs for predicting
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Figure 4.7: Boxplots for prediction error for FLM, FGAM, and FGAMM using truck
velocity, acceleration, or both at once as predictors.

the test set samples over 25 different random partitions into training-test sets is

displayed in Figure 4.7.

We see that both FGAM and FGAMM had lower mean RMSE for the velocity,

acceleration, and two functional predictor models. While FGAMM performed sim-

ilarly to FGAM when truck velocity was the functional predictor, the FGAM basis

construction provided better out-of-sample predictions for the other two models.

Both parameterizations for the FGAM gave superior prediction results to the Fer-

raty and Vieu model as well. The lowest mean RMSE was achieved by the FGAM

that included both functional predictors and used the more standard tensor prod-

uct construction. A method for continuously predicting emissions over time for

this data using a functional response model is considered by Asencio et al. [3]. A

non-functional data approach on an expanded data set from the original study

authors can be found in Clark et al. [15].
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CHAPTER 5

DISCUSSION

5.1 Conclusions

Continued advances in technology and data collecting can be expected to increas-

ingly often produce samples which are natural to analyze as functional data. Meth-

ods for functional data analysis will surely receive more and more attention in a

variety of scientific fields as these types of data sets proliferate. This dissertation

makes an important contribution to the field by introducing a new model for re-

gression when one wishes to use sampled functions as inputs to predict a scalar

response variable. The functional linear model has been extended to an addi-

tive, nonparametric structure which allows for more complicated relationships to

be modelled while still being highly interpretable. Our approach can handle re-

sponses from any exponential family distribution as well as multiple functional or

scalar predictors. We have demonstrated the effectiveness of the model in a num-

ber of applications; modelling health outcomes using brain scans from diffusion

tensor imaging, predicting closing price of online auctions, and predicting truck

exhaust emissions using travel speeds over short trips in various driving situations.

In Chapter 2, we introduced and confirmed the efficacy of estimation and infer-

ence procedures for FGAM that relied on penalized splines. We showed that the

FGAM can provide nearly identical prediction accuracy to the FLM when the FLM

is the true model, and offered substantial improvements when the FLM was not

the true model. We also showed that our proposed confidence bands can achieve

average coverage probabilities close to the nominal confidence level. For the anal-

ysis of the DTI dataset, FGAM performed favourably when compared with some
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standard functional regression models.

Applications where the functional data have significant missingness and mea-

surement error are very common. It is also the most often encountered form for

data sets in longitudinal data analysis. The work of Chapter 3 greatly extends

the applicability of FGAM, allowing it to still be fit to data with high amounts of

sparsity. We proposed two algorithms for fitting the FGAM after first expressing it

as a linear mixed model, we then took a Bayesian hierarchical modelling approach

and fit the model using a Metropolis-within-Gibbs sampler. Our MCMC algorithm

was able to provide useful inferences in difficult situations where initial estimates

provided by standard FPCA methods were quite poor due to rank deficiency in

the estimated covariance matrix. Our algorithms also worked well when the data

had several significant modes of variation present.

As functional data sets grow in size, it is important to have algorithms that can

quickly obtain approximate solutions for estimating functional regression models.

We developed a VB algorithm in a difficult setting involving multiple nonconjugate

full conditionals, which provided a substantial reduction in computation time over

MCMC while maintaining accuracy. Due to the shortened computation time of our

VB algorithm, computationally intensive methods for inference become feasible.

For example, one could bootstrap our VB fits to obtain improved estimates of the

standard errors necessary for constructing confidence bands for the true surface

F (x, t), as well as bands for the true trajectories X(t). We also demonstrated the

benefits of initializing our MCMC algorithm at the final estimates returned from

our VB method to achieve faster convergence of the Markov chain. In addition, we

found that a two-step approach of first using standard functional data methods to

recover the function predictors and then fitting a functional regression model was
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inadequate due to singularities or near singularities in the estimated covariance

operator for the curves.

The last chapter of this dissertation is a first step to answering a very important

question, which to this point has few answers in the literature: when is a scalar

on function regression problem not well-modelled by the functional linear model?

How often is the relationship between the response and functional predictor truly

nonlinear? Using an alternative mixed model representation for FGAM, we are able

to develop several simple tests for assessing linearity of an FGAM fit to functional

data. Through two simulation studies we were able to find an approach that

gave type I error rates quite close to the nominal level and also had high power.

In an application to measuring the amount of pollutants emitted by heavy-duty

trucks in various driving conditions, we presented strong evidence that particulate

matter could not be adequately predicted from truck speed or acceleration using

a functional linear model, whereas the (nonlinear) FGAM provided a much better

fit to the data.

5.2 Open Questions and Future Work

Many interesting extensions of FGAM are possible. One that is obvious is ex-

tending FGAM to function on function regression, using a model of the form

Yi(s) = β0 +
∫
T F (Xi(t), t, s)dt + εi(s). The implementation of this model can be

done fairly simply using the penalized spline framework we have presented in the

dissertation, requiring a third marginal basis for use in a trivariate tensor product

and the estimation of a third smoothing parameter. One must make sure that there

is enough resolution in the data to accurately estimate such a high dimensional
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function and be careful that all model parameters are identifiable. This model is

considered briefly in Scheipl et al. [103].

Another interesting application calling for a trivariate F , but with a scalar

response, would be to account for interactions between a scalar covariate and a

functional predictor; e.g. Yi = β0 +
∫
T F (Xi(t), t, zi)dt + εi for a scalar covariate

zi. Using FGAM would offer increased flexibility for modelling a more complex

interaction than the single index structure used in Li et al. [60]. The DTI data

considered in Chapter 2 also had a more complex structure than what was consid-

ered in the thesis. The complete data set consisted of multiple brain images being

taken for each subject, with several months or years between scans. One could

attempt extensions to FGAM along the lines of Goldsmith et al. [35] to account for

the longitudinal aspect of the data.

An application that is sure to receive more attention in the functional regression

literature is that of simultaneously performing smoothing and selection in models

with a large number of functional covariates. This problem is of significant interest

for time-course microarray data found in genomics (e.g., Wang et al. 120). It is also

considered for the FLM by Lian [61] and for a functional extension of projection

pursuit regression in Fan and James [24]. To fit FGAM with a very large numbers

of predictors, one could simply assume that each surface has the same amount of

smoothness. Alternatively, one could use a hierarchical prior on the smoothing

parameters to shrink them to a common value. For more moderate number of

predictors, performing variable selection in addition to smoothing is possible for

penalized spline models estimated in mgcv using Marra and Wood [64]. For fitting

to data with increasing numbers of functional predictors and incorporating varying

amounts of smoothness for each F (·, ·), faster computational methods are neces-
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sary. The increased availability of tools for parallel computing, easy porting of

C code into R, and computing on graphics processing units are key developments

which will help achieve this.

These computational developments will also be essential for improving the vari-

ational Bayes algorithm of Chapter 3 so that it can quickly fit larger data sets and

estimate higher numbers of principal components. An important extension of both

the VB and MCMC algorithms will be to allow for the handling of generalized re-

sponses. It will also be important to investigate coverage for the confidence bands

provided by our variational Bayes algorithm and compare with credible intervals

from MCMC. Typically, confidence bands derived from VB procedures suffer from

undercoverage. Bootstrapping the estimates from our variational Bayes algorithm

may be a promising way around this issue (Goldsmith et al. 34).

There is still much work to be done on our linearity testing problem from

Chapter 4. The approach using Type IV Beta priors requires extreme care when

computing the required hypergeometric functions, which can be quite difficult to

estimate for particular values of the inputs and parameters. More investigation is

needed to better understand the quantities R2
j and Q2

j to prove that the Lauricella

hypergeomtric functions always converge and in order to prove model selection

consistency (that the Bayes factor goes to zero in probability under H0). The

design assumed for the functional predictors and amount of multicollinearity will

no doubt play a large role. As with any time one uses Bayes factors, it will be

important to assess the sensitivity of the Bayes factors to changes in the prior

hyperparameters as well.

For the restricted likelihood ratio tests, it may be worthwhile to check how the

proposed methods perform when σ2
1, the nuisance variance component correspond-
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ing to the FLM term, is near zero. As was mentioned, it has been found that the

pseudo-RLRT’s performance can suffer in this situation.
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APPENDIX A

DERIVATIONS FOR THE VARIATIONAL BAYES ALGORITHM

This appendix details the derivation of the variational Bayes algorithm in Chap-

ter 3. After providing the forms for the full conditionals in Section A.1, we than

derive the optimal densities for each parameter in Section A.2. Next, we provide a

approximate lower bound for the log-likelihood in Section A.3. The full algorithm

is then provided in Section A.4.

A.1 Derivation of Full Conditional Distributions

In this section we derive the full conditional distributions for the variance compo-

nents and spline coefficients in (3.2) and also give the full posterior distribution.

Variance parameters

We begin by defining the N × dxdt matrix Z0 whose ith row is given by ZT
0,i =

LTBξiT0 = bTξiT0 and the N × (KxKt − dxdt) matrix Zp with ith row given by

ZT
p,i = bTξiTp. We also define yη0 = (y1 − η0,1, . . . , yN − η0,N)T , η1 = Z0β + Zpδ

with ith component η1,i = bTξi{T(βT , δT )T} = bTξiT0β + bTξiTpδ,, and

Ξ = [ξ1 : · · · : ξN ]T , we have

p(σ2|·) ∝ p(y|η0,1, . . . , η0,N ,β, δ, σ
2,Ξ)p(σ2)

∝ (σ2)−N/2−as−1 exp

−bs + 1
2 (yη0 − η1)T (yη0 − η1)

σ2


so that σ2|· ∼ IG

(
a = N/2 + as, b = bs + 1

2{yη0 − η1}T{yη0 − η1}
)
.
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Similarly,

σ2
x|· ∼ IG

a =
N∑
i

ni/2 + ax, b = bx + 1
2

N∑
i

ni∑
j

{
x̃ij − µx(tij)−

M∑
m

φm(tij)ξim
}2 .

Spline coefficients β, δ

p(β, δ|·) ∝ p(β)p(δ|λx, λt)p(λx)p(λt) ∝ exp
{
−1

2δT (λxΨx + λtΨt)δ
}

× exp
{
−(y− η0 − Z0β − Zpδ)T (y− η0 − Z0β − Zpδ)

2σ2

}
.

In other words,

δ|· ∼ N(mb,Sb) where

Sb = (ZTpZp/σ2 + λxΨx + λtΨt)−1, and mb = SbZTp (yη0 − Z0β) /σ2;

β|· ∼ N(mβ,Sβ) where

Sβ = (ZT0 Z0/σ
2)−1, and mβ = SβZT0 (yη0 − Zpδ) /σ2.
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The full posterior distribution is given by

p(β, δ, σ2, λx, λt,Ξ, σ2
x|y, x̃, η0,1, . . . , η0,N ,µx,Φ,ν) ∝

∝ (σ2)−N/2

× exp

− 1
2σ2

N∑
i

yη0,i −
Kx∑
j=1

Kt∑
k=1

LT
[
BXj (µx + Φξi) ·BTk (t)

]
[T(βT , δT )T ]j,k


2


× (σ2
x)−

∑N

i
ni/2 exp

[
− 1

2σ2
x

N∑
i

‖x̃i − µx(ti)−Φ(ti)ξi‖
2
2

]

× |λxΨx + λtΨt|1/2 exp
(
−1

2δT (λxΨx + λtΨt)δ
)
×

× exp
(
−1

2

N∑
i

ξTi diag(ν−1)ξi
)
· (σ2)−as−1 exp(−bs/σ2) · (σ2

x)−ax−1 exp(−bx/σ2
x)

× ·(λx)al+1 exp(−blλx)(λt)al+1 exp(−blλt),

where [A]j,k denotes the entry in the jth row and kth column of the matrix A.

A.2 Derivation of Optimal Proposal Densities

In this section we derive the optimal densities, q∗, for parameters that were given

conjugate priors and give detailed calculations for our Laplace approximation to

the optimal density for the principal component scores. We use the notation and

full conditionals from Appendix A and often make use of the results that for

x ∼ (µ,Σ), E[xTSx] = tr(SΣ) + µTSµ and E[xxT ] = E[x] E[x]T + Var[x].

We first discuss the updates for the offset terms, η0i, i = 1, . . . , N . For simplic-

ity, we assume that they can be expressed as η0i = uTi η0 or (η01, . . . , η0N)T = Uη0,

where U is an N × p0 matrix with rows uTi containing, for e.g., scalar covariate

observations for parametric terms, basis function evaluations for nonparametric
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terms, or a leading column of ones for an intercept. Further generalizations are

straightforward. The coefficient vector η0 has prior density p(η0) = N(0, σ2
η0
Ip0),

with σ2
η0

large and fixed. The full conditional is given by

p(η0|rest) ∝ p(y|η0,β, δ,Ξ, σ2)p(η0)

∝ exp
[
−(y− Uη0 − η1)T (y− Uη0 − η1)

2σ2 − 1
σ2

η0

ηT0 Ip0η0

]

∝ exp
{
−1

2

[
ηT0

(
1
σ2U

TU + 1
σ2

η0

Ip0

)
η0 − 2

(
(y− η1)TU/σ2

)
η0

]}
.

Thus,

q∗(η0) ∝ exp
{
−1

2 E−η0

[
ηT0

(
1
σ2U

TU + 1
σ2

η0

Ip0

)
η0 − 2

(
(y− η1)TU/σ2

)
η0

]}

∝ exp
{
−1

2

[
ηT0

(
µq(1/σ2)UTU + 1

σ2
η0

Ip0

)
η0 − 2

(
(y− µq(η1))TUµq(1/σ2)

)
η0

]}
,

where µq(η1) = µq(bξ)T(µq(β)
T , µq(δ)

T )T . Denote the rows of the N ×KxKt matrix,

µq(bξ), by µTq(bξi
). By completing the square, we see q∗(η0) = N(µq(η0),Σq(η0)) where

Σq(η0) =
(
µq(1/σ2)UTU + 1

σ2
η0
Ip0

)−1
and µq(η0) = Σq(η0)UT (y− µq(η1))µq(1/σ2).

Next, for β

p(β|rest) ∝ p(y|η0,β, δ,Ξ, σ2)p(β)

∝ exp
[
−(y− Uη0 − η1)T (y− Uη0 − η1)

2σ2 − 1
σ2

β

βT Idxdtβ
]

∝ exp
{
−1

2

[
βT

(
1
σ2Z

T
0 Z0 + 1

σ2
β

Idxdt

)
β − 2

(
(y− Uη0 − Zpδ)TZ0/σ

2
)

β

]}

Thus,

q∗(β) ∝ exp
{
−1

2

[
βT

(
µq(1/σ2) E−β[ZT0 Z0] + 1

σ2
β

Idxdt

)
β

]}
·

× exp
{
−
µq(1/σ2)

2
[
(y− Uµq(η0))Tµq(bξ)T0 − µq(δ)

T E−β(ZTpZ0)
]

β
}
,
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where

E(ZTj Zk) = E
[
N∑
i=1

(TTj bξi)(b
T
ξi
Tk)

]
= TTj

[
N∑
i=1

Eξ(bξib
T
ξi

)
]
Tk, j, k = 0, p.

Thus, q∗(β) = N(µq(β),Σq(β)) with

Σq(β) =
{
TT0

[
N∑
i=1

Eξ

(
bξib

T
ξi

)]
T0µq(1/σ2) + 1

σ2
β

Idxdt

}−1

µq(β) = Σq(β)TT0

{
µTq(bξ)(y− Uµq(η0))−

[
N∑
i=1

Eξ

(
bξib

T
ξi

)]
Tpµq(δ)

}
µq(1/σ2).

The derivation for δ is analogous and given by q∗(δ) = N(µq(δ),Σq(δ)) with

Σq(δ) =
{
TTp

[
N∑
i=1

Eξ

(
bξib

T
ξi

)]
Tpµq(1/σ2) + µq(λx)Ψx + µq(λt)Ψt

}−1

µq(δ) = Σq(δ)TTp

{
µTq(bξ)(y− Uµq(η0))−

[
N∑
i=1

Eξ

(
bξib

T
ξi

)]
T0µq(β)

}
µq(1/σ2).

For σ2
x, we have,

σ2
x|· ∼ IG

(
N∑
i=1

ni/2 + ax, bx + 1
2

N∑
i=1
||x̃i − µx(ti)− Φ(ti)ξi||2

)

so that

q∗(σ2
x) ∝ exp

{
−
(
ax +

N∑
i=1

ni/2− 1
)

log(σ2
x)

− 1
σ2
x

[
bx + 1

2 E−σ2
x

(
N∑
i=1
||x̃i − µx(ti)− Φ(ti)ξi||22

)]}
.

Therefore, q∗(σ2
x) = IG(ax +∑N

i=1 ni/2, Bq(σ2
x)), where

Bq(σ2
x) = bx + 1

2

N∑
i=1

[
||x̃i − µx(ti)− Φ(ti)µq(ξi)||

2
2 + tr

(
Φ(ti)TΦ(ti)Σq(ξi)

)]
Note that for θ = IG(A,B), µθ(1/θ) = A/B.

Similarly,

p(σ2|·) ∝ (σ2)−N/2−as−1 exp
−bs + 1

2 (y− Uη0 − η1)T (y− Uη0 − η1)
σ2


so that σ2|· ∼ IG

(
a = N/2 + as, b = bs + 1

2 (y− Uη0 − η1)T (y− Uη0 − η1)
)
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Thus,

q∗(σ2) ∝ exp
{
−(as +N/2− 1) log(σ2)

}
×
{
− 1
σ2

[
bs + 1

2 E−σ2

(
|| (y− Uη0 − η1) ||22

)]}
.

E−σ2

[
|| (y− Uη0 − η1) ||22

]
= E−σ2

[
||(y− Uµq(η0) − µq(η1))||22

]
+ E−σ2

[
||Uη0 − Uµq(η0)||22

]
+ E−σ2

[
||η1 − µq(η1)||22

]
.

Now E−σ2

[
||Uη0 − Uµq(η0)||22

]
= tr

(
UTUΣq(η0)

)
and for the third term on the RHS

we have

E−σ2||η1 − µq(η1)||22] = E−σ2

[
N∑
i=1

(bTξiθ − µq(bξi
)
Tµq(θ))2

]
= E−σ2

[
N∑
i=1

θTbξib
T
ξi

θ

]

− µq(θ)
Tµq(bξi

)
Tµq(bξi

)µq(θ) = E−ξi

[
tr
(

N∑
i=1

bξib
T
ξi

Σq(θ)

)

+ µq(θ)
T

N∑
i=1

bξib
T
ξi
µq(θ)

]
− µq(θ)

Tµq(bξi
)
Tµq(bξi

)µq(θ) = tr
[
N∑
i=1

Eξ

(
bξib

T
ξi

)
Σq(θ)

]

+ µq(θ)
T

[
N∑
i=1

Eξ

(
bξib

T
ξi

)]
µq(θ) − µq(θ)

Tµq(bξi
)
Tµq(bξi

)µq(θ),

where, as before, θ = T(βT , δT )T .

Therefore, we have, q∗(σ2) = IG(as +N/2, Bq(σ2)), where Bq(σ2) is given by

bs + 1
2 ||(y− Uµq(η0) − µq(η1))||22 + 1

2 tr
(
UTUΣq(η0)

)
+ 1

2 tr
{[

N∑
i=1

Eξ

(
bξib

T
ξi

)]
Σq(θ)

}

+ 1
2µq(θ)

T

[
N∑
i=1

Eξ

(
bξib

T
ξi

)]
µq(θ) −

1
2µq(θ)

Tµq(bξi
)
Tµq(bξi

)µq(θ).
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Laplace Approx. for Optimal Density for PC Scores

First, defining some notation, the derivatives of the matrix valued function M :

Rp → Rm×n with respect to vi, vT = (v1, . . . , vp) and v are

DviM(v) ≡


∂m11
vi

· · · ∂m1n
vi

... . . . ...
∂mm1
vi

· · · ∂mmn
vi

 ,

DvTM ≡
[
Dv1M| · · · |DvpM

]
, DvM ≡


Dv1M

...

DvpM

 ,

respectively. Also defineDv2M ≡ Dv(DvM). We first differentiate the components

of log q(ξi) with respect to ξi

Dbξi
tr(bξib

T
ξi

Σq(θ)) = Dbξi
tr(bξib

T
ξi

Σq(θ)) = Dbξi
tr(bTξiΣq(θ)bξi)

= Dbξi
bTξiΣq(θ)bξi = 2Σq(θ)bξi

We then have (See, Vetter 116),

Dξ tr(bξib
T
ξi

Σq(θ)) = Dξi(b
T
ξi

)Dbξi
tr(bξib

T
ξi

Σq(θ)) = 2Dξi(b
T
ξi

)Σq(θ)bξi .

Dξi(yi − uTi µq(η0) − bTξiµq(θ))2 = −2Dξi(b
T
ξi

)µq(θ)(yi − uTi µq(η0) − bTξiµq(θ))

Dξi

{
ξTi [µq(1/σ2

x)Φ(ti)TΦ(ti) + diag(ν−1)]ξi
}

= 2[µq(1/σ2
x)Φ(ti)TΦ(ti)+diag(ν−1)]ξi

We arrive at

Dξi logq(ξi) = µq(1/σ2)Dξi(b
T
ξi

)µq(θ)(yi − uTi µq(η0) − bTξiµq(θ))

+ µq(1/σ2
x)(x̃i − µx(ti))TΦ(ti)− [µq(1/σ2

x)Φ(ti)TΦ(ti) + diag(ν−1)]ξi

− µq(1/σ2)Dξi(b
T
ξi

)Σq(θ)bξi
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Now to compute Dξ2
i

log q(ξi):

Dξi

[
Dξi(b

T
ξi

)µq(θ)(yi − uTi µq(η0) − bTξiµq(θ))
]

= Dξ2
i
(bTξi)µq(θ)(yi − uTi µq(η0) − bTξiµq(θ))− [IM ⊗Dξi(b

T
ξi

)µq(θ)]Dξi(b
T
ξi

)µq(θ)

= Dξ2
i
(bTξi)µq(θ)(yi − uTi µq(η0) − bTξiµq(θ))− vec

{
Dξi(b

T
ξi

)µq(θ)[Dξi(b
T
ξi

)µq(θ)]T
}

Dξi

{
[µq(1/σ2

x)Φ(ti)TΦ(ti) + diag(ν−1)]ξi
}

= vec[µq(1/σ2
x)Φ(ti)TΦ(ti) + diag(ν−1)]

Dξi

[
Dξi(b

T
ξi

)Σq(θ)bξi

]
= Dξ2

i
(bTξi)Σq(θ)bξi + [IM ⊗Dξi(b

T
ξi

)](IM ⊗Σq(θ))Dξi(bξi)

= Dξ2
i
(bTξi)Σq(θ)bξi + [IM ⊗Dξi(b

T
ξi

)Σq(θ)]Dξi(bξi)

= Dξ2
i
(bTξi)Σq(θ)bξi + [IM ⊗Dξi(b

T
ξi

)Σq(θ)]vec
[
DTξi(b

T
ξi

)
]

= Dξ2
i
(bTξi)Σq(θ)bξi + vec

[
Dξi(b

T
ξi

)Σq(θ)DTξi(b
T
ξi

)
]
,

where ⊗ denotes the Kronecker product and the last equality follows from, e.g.,

Vetter [116], Eq. (9). Thus, we have

Dξ2
i

log q(ξi) = µq(1/σ2)Dξ2
i
(bTξi)µq(θ)(yi − uTi µq(η0) − bTξiµq(θ))

− µq(1/σ2)vec
{
Dξi(b

T
ξi

)µq(θ)[Dξi(b
T
ξi

)µq(θ)]T
}

− vec[µq(1/σ2
x)Φ(ti)TΦ(ti) + diag(ν−1)]

− µq(1/σ2)
{
Dξ2

i
(bTξi)Σq(θ)bξi + vec

[
Dξi(b

T
ξi

)Σq(θ)DTξi(b
T
ξi

)
]}

(A.1)

Next to derive expressions for Dξi(bTξi) and Dξ2
i
(bTξi). Let c(ξi) = µx+Φξi and let

B′ξi be the T×KxKt matrix of derivatives of the tensor product B-splines evaluated

at c(ξi) with jth row denoted by (B′)Tj,i. Similarly, define B′′ξi , then

Dξi(b
T
ξi

) = Dξi(c
T )DcbTξi = Dξi(c

T )Dξi(L
TBξi) = ΦTB′ξi � (L⊗ 1TKxKt)
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and

Dξ2
i
(bTξi) = [IM ⊗ΦT ]Dξi [B

′
ξi
� (L⊗ 1TKxKt)]

= (IM ⊗ΦT )(Dξi(c
T )⊗ IT )Dc[B′ξi � (L⊗ 1TKxKt)]

= (IM ⊗ΦT )(ΦT ⊗ IT )



`1 · (B′′)T1,i

0T×KxKt

`2 · (B′′)T2,i
...

`T · (B′′)TT,i


= (ΦT ⊗ΦT )



`1 · (B′′)T1,i

0T×KxKt

`2 · (B′′)T2,i
...

`T · (B′′)TT,i


,

where 0m×n denotes a m× n matrix with every entry equal to 0. Thus, we arrive

at our Laplace approximation 3.6.

Next, we compute the expectations with respect to ξi involving bξi . We use a

second order matrix Taylor expansion about ξi,0. Let ξ̃i = ξi − ξi,0, we have

bξi ≈ bξi(ξi,0) +Dξi [bξi(ξi,0)]ξ̃i + 1
2DξT

2
i

[bξi(ξi,0)](ξ̃i ⊗ ξ̃i)

where D2
ξT

2
i

[bξi(ξi,0)] ≡ DξTi {DξTi [bξi(ξi,0)]} with dimension KxKt × M2

(see, ?)]vetter1973matrix. Therefore, we have

µq(bξi
) ≈ bξi(ξi,0) + 1

2DξT
2

i
[bξi(ξi,0)]vec(Λ) = bξi(ξi,0) + 1

2
{
Dξ2

i
[bTξi(ξi,0)]

}T
vec(Λ)

and

bξib
T
ξi
≈
{
bξi(ξi,0) +Dξi [bξi(ξi,0)]ξ̃i + 1

2DξT
2

i
[bξi(ξi,0)](ξ̃i ⊗ ξ̃i)

}
×
{
bξi(ξi,0) +Dξi [bξi(ξi,0)]ξ̃i + 1

2DξT
2

i
[bξi(ξi,0)](ξ̃i ⊗ ξ̃i)

}T
= bξi(ξi,0)bTξi(ξi,0) + bξi(ξi,0)ξ̃Ti DTξi [bξi(ξi,0)] +Dξi [bξi(ξi,0)]ξ̃ibTξi(ξi,0)

+ 1
2bξi(ξi,0)(ξ̃Ti ⊗ ξ̃

T

i )Dξ2
i
[bTξi(ξi,0)] + 1

2DξT
2

i
[bξi(ξi,0)](ξ̃i ⊗ ξ̃i)bTξi(ξi,0)

+Dξi [bξi(ξi,0)]ξ̃iξ̃
T

i DξTi
[bTξi(ξi,0)] + o(||ξ̃i||2)
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so that

Eξi [bξib
T
ξi

] ≈ bξi(ξi,0)bTξi(ξi,0) + 1
2bξi(ξi,0)vec(Λ)TDξ2

i
(bTξi(ξi,0))

+ 1
2DξT

2
i

(bξi(ξi,0))vec(Λ)bTξi(ξi,0) +DξTi
[bξi(ξi,0)]ΛDξi [b

T
ξi

(ξi,0)]

= bξi(ξi,0)bTξi(ξi,0) + bξi(ξi,0)vec(Λ)TDξ2
i
(bTξi(ξi,0))

+
{
Dξi [b

T
ξi

(ξi,0)]
}T

ΛDξi [b
T
ξi

(ξi,0)]

A.3 Derivation of Log-Likelihood Lower Bound

For any density, q∗, a lower bound on our log-likelihood can be derived using

Kullbeck-Leibler divergence and is given by log[p(y, x̃; Θ)] ≥ log[p(y, x̃; q)] :=∫
q∗(Θ) log

(
p(y,x̃,Θ)
q∗(Θ)

)
dΘ =

Eq∗{log[p(y, x̃,Θ)]− log[q∗(Θ)]} (Ormerod and Wand 80).

log[p(y, x̃; q)] = EΘ{log[p(y|η0,β, δ,Ξ, σ2)]}+ EΘ{log[p(x̃|Ξ, σ2
x)]}

+ EΘ{log[p(η0)]− log[q∗(η0)]}+ EΘ{log[p(β)]− log[q∗(β)]}

+ EΘ{log[p(δ)]− log[q∗(δ)]}+
N∑
i=1

EΘ{log[p(ξi)]− log[q∗(ξi)]}

+ EΘ{log[p(λx)]− log[q∗(λx)]}+ EΘ{log[p(λt)]− log[q∗(λt)]}

+ EΘ{log[p(σ2)]− log[q∗(σ2)]}+ EΘ{log[p(σ2
x)]− log[q∗(σ2

x)]} (A.2)

The first term in (A.2) is

EΘ{log[p(y|η0,β, δ,Ξ, σ2)]} = EΘ

[
−N2 log(σ2)− 1

2σ2 ||y− Uη0 − η1||22
]

+ C

= −N2 EΘ[log(σ2)]− µq(1/σ2)(Bq(σ2) − bs) + C,

where C is used from here on to represent any constant that will not affect the

log-likelihood as the parameter estimates are updated. The second term in (A.2)
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is

EΘ{log[p(x̃|Ξ, σ2
x)]} = EΘ

[
−
∑N
i=1 ni
2 log(σ2

x)−
1

2σ2
x

N∑
i=1
||x̃i − µx(ti)− Φ(ti)ξi||22

]

+ C = −
∑N
i=1 ni
2 EΘ[log(σ2

x)]− µq(1/σ2
x)(Bq(σ2

x) − bx) + C.

The third term (recalling that σ2
η0

is fixed) is

EΘ{log[p(η0)]− log[q∗(η0)]} = EΘ

[
− 1

2σ2
η0

ηT0 η0

+ 1
2 log(|Σq(η0)|) + 1

2(η0 − µq(η0))TΣq(η0)
−1(η0 − µq(η0))

]
+ C

= − 1
2σ2

η0

[
µq(η0)

Tµq(η0) + tr(Σq(η0))
]

+ 1
2 log(|Σq(η0)|) + C

The fourth term (recalling that σ2
β is fixed) is

EΘ{log[p(β)]− log[q∗(β)]} = EΘ

[
− 1

2σ2
β

βTβ + 1
2 log(|Σq(β)|)

+ 1
2(β − µq(β))TΣq(β)

−1(β − µq(β))
]

+ C

= − 1
2σ2

β

[
µq(β)

Tµq(β) + tr(Σq(β))
]

+ 1
2 log(|Σq(β)|) + C

The fifth term is

EΘ{log[p(δ)]− log[q∗(δ)]} = EΘ

[1
2 log |λxΨx + λtΨt| −

1
2δT (λxΨx + λtΨt)δ

+ 1
2 log(|Σq(δ)|) + 1

2(δ − µq(δ))TΣq(δ)
−1(δ − µq(δ))

]
+ C

≤ 1
2 log

∣∣∣µq(λx)Ψx + µq(λt)Ψt

∣∣∣− 1
2µq(δ)

T (µq(λx)Ψx + µq(λt)Ψt)µq(δ)

− 1
2µq(λx) tr

(
ΨxΣq(δ)

)
− 1

2µq(λt) tr
(
ΨtΣq(δ)

)
+ 1

2 log(|Σq(δ)|) + C

Where the inequality follows from Jensen’s inequality and the log-concavity of the

determinant over the class of positive definite matrices. This inequality is not

in the direction we want. If we use the approximation EΘ log |λxΨx + λtΨt| ≈
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log
∣∣∣µq(λx)Ψx + µq(λt)Ψt

∣∣∣, we appear to lose our guarantee of increasing the lower

bound on the log-likelihood at each iteration.

In the sixth term we have

EΘ{log[p(ξi)]− log[q∗(ξi)]} = EΘ

[
−1

2ξTi diag(ν−1)ξi + M

2 log(|Λi|)

+ 1
2(ξi − ξi,0)TΛ−1

i (ξi − ξi,0)
]

+ C

= −1
2
{
ξTi,0 diag(ν−1)ξi,0 + tr[diag(ν−1)Λi]

}
+ M

2 log(|Λi|) + C, i = 1, . . . , N

For the seventh term

EΘ{log[p(λx)]− log[q∗(λx)]} = EΘ

{
(al + 1) log(λx)− blλx

− 1
2 log

∣∣∣λxΨx + µq(λt)Ψt

∣∣∣− log(cq(λx))

+ 1
2
(
tr(ΨxΣq(δ)) + µq(δ)

TΨxµq(δ)
)
λx − (al + 1) log(λx) + blλx

}
+ C

≈ (al + 1)EΘ[log(λx)]−
1
2 log

∣∣∣µq(λx)Ψx + µq(λt)Ψt

∣∣∣− log(cq(λx))

+ 1
2
(
tr(ΨxΣq(δ)) + µq(δ)

TΨxµq(δ)
)
µq(λx) + C

For the eighth term

EΘ{log[p(λt)]− log[q∗(λt)]} ≈ (al + 1)EΘ[log(λt)]−
1
2 log

∣∣∣µq(λx)Ψx + µq(λt)Ψt

∣∣∣
− log(cq(λt)) + 1

2
(
tr(ΨtΣq(δ)) + µq(δ)

TΨtµq(δ)
)
µq(λt) + C

For the ninth term

EΘ{log[p(σ2)]− log[q∗(σ2)]} = EΘ

{
−(as + 1) log(σ2)− bs

σ2

− (as +N/2) log(Bq(σ2)) + (as +N/2 + 1) log(σ2) +
Bq(σ2)

σ2

}
+ C

= N

2 EΘ[log(σ2)]− (as +N/2) log(Bq(σ2)) + µq(1/σ2)(Bq(σ2) − bs) + C
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The tenth term is

EΘ{log[p(σ2
x)]− log[q∗(σ2

x)]} = EΘ

{
−(ax + 1) log(σ2

x)−
bx
σ2
x

− (ax +
N∑
i=1

ni/2) log(Bq(σ2
x)) + (ax +

N∑
i=1

ni/2 + 1) log(σ2
x) +

Bq(σ2
x)

σ2
x

}
+ C

=
∑N
i=1 ni
2 EΘ[log(σ2

x)]− (ax +
N∑
i=1

ni/2) log(Bq(σ2
x)) + µq(1/σ2

x)(Bq(σ2
x) − bx) + C

Combining all ten terms, several components cancel and we are left with

log[p(y, x̃; q)] ≈ − 1
2σ2

η0

[
µq(η0)

Tµq(η0) + tr(Σq(η0))
]

+ 1
2 log(|Σq(η0)|)

− 1
2σ2

β

[
µq(β)

Tµq(β) + tr(Σq(β))
]

+ 1
2 log(|Σq(β)|)

− 1
2

N∑
i=1

{
ξTi,0 diag(ν−1)ξi,0 + tr[diag(ν−1)Λi]−M log(|Λi|)

}

+ (al + 1)EΘ[log(λx)]− (as +N/2) log(Bq(σ2))− (ax +
N∑
i=1

ni/2) log(Bq(σ2
x))

+ 1
2 log(|Σq(δ)|) + (al + 1)EΘ[log(λt)]

− 1
2 log

∣∣∣µq(λx)Ψx + µq(λt)Ψt

∣∣∣− log(cq(λt)/cq(λx)) (A.3)

A.4 Complete Variational Bayes Algorithm

Below is the full VB algorithm. Note that it is spread over two pages.
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Algorithm 2 Steps for estimating parameters from optimal densities, q∗(θ), for
FGAM
1: Initialize Bq(σ2), Bq(σ2

x), µq(λx), µq(λt) > 0, Σq(η0) = Ip0 , Σq(β) = Idxdt ,
Σq(δ) = IKxKt−dxdt , µq(η0) = 0, µq(β) = 0, µq(δ) = 0.

2: Choose grid of G points, g, and obtain Gauss-Laguerre quadrature weights,
Lg, for numerical integration of optimal densities for λx, λt.

3: Compute ν, µx, Φ, µx(ti), Φ(ti), i = 1, . . . , N , from an initial functional
principal components analysis.

4: repeat
5: for i = 1→ N do
6: ξi,0 ← mode of log q(ξi)

= µq(1/σ2)
[
(yi − uTi µq(η0))bTξiµq(θ) − 1

2(bTξiµq(θ))2 + 1
2bTξiΣq(θ)bξi

]
+(x̃i − µx(ti))TΦ(ti)ξi − 1

2ξTi
[
µq(1/σ2

x)ΦT (ti)Φ(ti) + diag(ν−1)
]

ξi
7: Dξi [bTξi(ξi,0)]← ΦTB′ξi,0 � (L⊗ 1TKxKt)
8: Dξ2

i
[bTξi(ξi,0)]← (ΦT ⊗ΦT )

×
[
`1 · (B′′ξi,0)1,i,0KxKt×T , `2 · (B′′ξi,0)2,i, . . . , `T · (B′′ξi,0)T,i

]T
9: vec(Λ−1

i )←
[
µq(1/σ2)Dξ2

i
(bTξi)µq(θ)(yi − uTi µq(η0) − bTξiµq(θ))

+µq(1/σ2)vec
{
Dξi(bTξi)µq(θ)[Dξi(bTξi)µq(θ)]T

}
+vec[µq(1/σ2

x)Φ(ti)TΦ(ti) + diag(ν−1)]
+µq(1/σ2)

{
Dξ2

i
(bTξi)Σq(θ)bξi + vec

[
Dξi(bTξi)Σq(θ)DTξi(b

T
ξi

)
]} ]

ξi=ξi,0

10: µq(bξi
) ← bξi(ξi,0) + 1

2

{
Dξ2

i
[bTξi(ξi,0)]

}T
vec(Λi)

11: Eξi [bξib
T
ξi

]← bξi(ξi,0)bTξi(ξi,0) + bξi(ξi,0)vec(Λi)TDξ2
i
(bTξi(ξi,0))

+
{
Dξi [bTξi(ξi,0)]

}T
ΛiDξi [bTξi(ξi,0)]

12: end for
13: Σq(η0) ←

{
µq(1/σ2)UTU + 1

σ2
η0
Ip0

}−1

14: µq(η0) ← Σq(η0)UT
(
y− µq(η1)

)
µq(1/σ2)
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15: Σq(β) ←
{
TT0

[∑N
i=1 Eξ

(
bξib

T
ξi

)]
T0µq(1/σ2) + 1

σ2
β
Idxdt

}−1

16: µq(β) ← Σq(β)TT0
{
µTq(bξ)(y− Uµq(η0))−

[∑N
i=1 Eξ

(
bξib

T
ξi

)]
Tpµq(δ)

}
µq(1/σ2)

17: Σq(δ) ←
{
TTp

[∑N
i=1 Eξ

(
bξib

T
ξi

)]
Tpµq(1/σ2) + µq(λx)Ψx + µq(λt)Ψt

}−1

18: µq(δ) ← Σq(δ)TTp
{
µTq(bξ)(y− Uµq(η0))−

[∑N
i=1 Eξ

(
bξib

T
ξi

)]
T0µq(β)

}
µq(1/σ2)

19: for i = 1→ G do
20: `λx(gi)← 1

2 log
∣∣∣giΨx + µq(λt)Ψt

∣∣∣−gi {bl + 1
2

[
tr(ΨxΣq(δ)) + µq(δ)

TΨxµq(δ)
]}

21: end for
22: µq(λx) ← [LT

g `λx(g)]−1LT
g {g� exp[`λx(g)−maxg `λx(g)]}

23: for i = 1→ G do
24: `λt(gi)← 1

2 log
∣∣∣µq(λx)Ψx + giΨt

∣∣∣−gi {bl + 1
2

[
tr(ΨtΣq(δ)) + µq(δ)

TΨtµq(δ)
]}

25: end for
26: µq(λt) ← [LT

g `λt(g)]−1LT
g {g� exp[`λt(g)−maxg `λt(g)]}

27: Bq(σ2
x) ← bx + 1

2
∑N
i=1

[
||x̃i − µx(ti)− Φ(ti)ξi,0||22 + tr

(
Φ(ti)TΦ(ti)Λi

)]
28: µq(1/σ2

x) ← (ax +∑N
i=1 ni/2)/Bq(σ2

x)
29: Bq(σ2) ← bs + 1

2 ||(y− Uµq(η0) − µq(η1))||22
+1

2 tr
(
UTUΣq(η0)

)
+ 1

2 tr
{[∑N

i=1 Eξ

(
bξib

T
ξi

)]
Σq(θ)

}
+1

2µq(θ)
T
[∑N

i=1 Eξ

(
bξib

T
ξi

)]
µq(θ) − 1

2µq(θ)
Tµq(bξi

)
Tµq(bξi

)µq(θ)

30: µq(1/σ2) ← (ax +N/2)/Bq(σ2)
31: until Change in p(y, x̃; q) is negligible OR maximum number of iterations

reached
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APPENDIX B

DERIVATION OF BAYES FACTORS FOR TESTING LINEARITY

In this appendix we provide derivations for the Bayes factors given in Section 4.6.2.

We use the general linear mixed model (4.6), which we denoteM. In Section B.1 we

derive a formula for a model with an unspecified number, J , of variance components

and in Section B.2 we provide an alternate expression for the J = 3 case that

applies to FGAM.

B.1 For Arbitrary Number of Variance Components

To compute the desired Bayes factor, we first need
∫
Rq0 p(y|β,b, σ2)p(β)dβ. Defin-

ing β̂ := (XTX)−1XTy, we have

||y− Xβ − Zb||2 = ||y− Xβ̂ − Zb||2 + ||Xβ̂ − Xβ||2 = ||y− Xβ̂ − Zb||2

+ (β − β̂)T (XTX)(β − β̂),

so that

∫
Rq0

p(y|β,b, σ2)p(β)dβ = |XTX|−1/2

(2πσ2)(n−q0)/2

∫
Rq0

φq0(β; β̂, σ2(XTX)−1)dβ = |XTX|−1/2

(2πσ2)(n−q0)/2 ,

where φp(· ; µ,Σ) is the pdf of a Np(µ,Σ) distribution.

Now for each j consider the eigendecomposition of ZTj Zj = WT
j D̄2Wj with

Wj orthogonal and D̄j = diag(d̄j1, . . . , d̄jqj), and define Ūj := ZjWjD̄−1
j so that

Zj = ŪjD̄jWT
j . We also define D̄ := blkdiag(D̄1, . . . , D̄j), Ū := [Ū1 : · · · : Ūj],

and W := [W1 : · · · : Wj], so that Z = [Ū1D̄1WT
1 : · · · : ŪjD̄jWT

j ] = ŪD̄WT and

ZTZ = WT D̄2W. When integrating with respect to b, we make the orthogonal
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transformation b∗ = WTb and thus have

∫
Rq

∫
Rq0
p(y|β,b, σ2)p(β)p(b|g, σ2)dβdb = |XTX|−1/2|Ψ|−1/2

(2πσ2)(n−q0)/2(2πσ2)q/2

×
∫
Rq

exp
[
− 1

2σ2 (||y − Xβ̂ − ŪD̄b∗||2 + bT∗Ψ−1b∗)
]
db∗,

where Ψ is the diagonal matrix Ψ = blkdiag(Ψ1, . . . ,Ψj). If we define r = y−Xβ̂,

then by completing the square in the exponential function, we obtain

||r− ŪD̄b∗||2 + bT∗Ψ−1b∗ = [b∗ − (D̄2 + Ψ−1)−1D̄ŪT r]T (D̄2 + Ψ−1)

× [b∗ − (D̄2 + Ψ−1)−1D̄ŪT r]− rT ŪD̄(D̄2 + Ψ−1)−1D̄ŪT r + rT r.

Our integral becomes

∫
Rq

∫
Rq0
p(y|β,b, σ2)p(β)p(b|g, σ2)dβdb = |X

TX|−1/2|Ψ|−1/2|D̄2 + Ψ−1|−1/2

(2πσ2)(n−q0)/2(2πσ2)q0/2

× exp
[
− 1

2σ2 (rT ŪD̄(D̄2 + Ψ−1)−1D̄ŪT r− rT r)
]

×
∫
Rq
φq(b∗; (D̄2 + Ψ−1)−1D̄ŪT r, D̄2 + Ψ−1)db∗

= |X
TX|−1/2|Ψ|−1/2|D̄2 + Ψ−1|−1/2

(2πσ2)(n−q0)/2

× exp
[
− 1

2σ2 (rT ŪD̄(D̄2 + Ψ−1)−1D̄ŪT r− rT r)
]
. (B.1)

To proceed further, we must discuss the form of the diagonal matrices Ψj. We fol-

low Maruyama and George [66] and define Ψj = diag{ψj1(gj, νj1), . . . , ψjqj(gj, νjqj)}

where ψji(gj, νji) = d̄−2
ji [(1+gj)νji−1], with νji ≥ 1 for all 1 ≤ i ≤ qj and 1 ≤ j ≤ J

so that ψji(gj, νji) > 0. Maruyama and George [66] use ν1/2
ji = d̄ji/d̄qj .

Letting ūji denoted the ith column of Ūj, the term inside the exponential
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function in (B.1) can be simplified as follows

−rT ŪD̄(D̄2 + Ψ−1)−1D̄ŪT r + rT r = −rT
 J∑
j=1

qj∑
i=1

ūjiūTji
d̄2
ji

d̄2
ji + ψ−1

ji

 r + rT r

= −rT
 J∑
j=1

qj∑
i=1

ūjiūTji
(1 + gj)νji − 1

(1 + gj)νji

 r + rT r

= −
J∑
j=1

1
1 + gj

qj∑
i=1

(ūTjir)2 (1 + gj)νji − 1
νji

+ rT r

= −
J∑
j=1

gj
1 + gj

qj∑
i=1

(ūTjir)2 +−
J∑
j=1

1
1 + gj

qj∑
i=1

(ūTjir)2(1− v−1
ji ) + rT r

=
J∑
j=1

gj
1 + gj

[
J−1rT r−

qj∑
i=1

(ūTjir)2
]

+
J∑
j=1

1
1 + gj

[
J−1rT r−

qj∑
i=1

(ūTjir)2(1− v−1
ji )

]

=
J∑
j=1

||r||2

1 + gj

[
gj(J−1 −R2

j ) + J−1 −Q2
j

]
,

where

R2
j =

qj∑
i=1

(ūTjir)2

rT r
and Q2

j =
qj∑
i=1

(1− ν−1
ji )

(ūTjir)2

rT r
. (B.2)

For Maruyama and George [66], where there are no random effects and r is just the

centred response, their R2 is the usual coefficient of multiple determination. Using

their choices for the νj’s, we get

|Ψ|−1/2|D̄2 + Ψ−1|−1/2 =
 J∏
j=1

qj∏
i=1

νji + νjigj − 1
d̄2
ji

−1/2 J∏
j=1

qj∏
i=1

d̄2
jiνji(1 + gj)

νji + νjigj − 1

−1/2

=
J∏
j=1

(1 + gj)qj∏qj
i=1 ν

1/2
ji

 ,
so that (B.1) becomes

∫
Rq

∫
Rq0
p(y|β,b, σ2)p(β)p(b|g, σ2)dβdb

= |XTX|−1/2

(2πσ2)(n−q0)/2

J∏
j=1

(1 + gj)−qj/2∏qj
i=1 ν

1/2
ji


× exp

− 1
2σ2

J∑
j=1

||r||2

1 + gj

[
gj(J−1 −R2

j ) + J−1 −Q2
j

] (B.3)
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Now for the integration with respect to σ2

∫ ∞
0

∫
Rq

∫
Rq0

p(y|β,b, σ2)p(β)p(b|g, σ2)p(σ2)dβdbd(σ2) =
∫ ∞

0

|XTX|−1/2

(2πσ2)(n−q0)/2

×
J∏
j=1

(1 + gj)−qj/2∏qj
i=1 ν

1/2
ji

 exp

− 1
2σ2

J∑
j=1

||r||2

1 + gj

[
gj(J−1 −R2

j ) + J−1 −Q2
j

] 1
σ2d(σ2)

= Γ[(N − q0)/2] · |XTX|−1/2

π(N−q0)/2(rT r)(N−q0)

J∏
j=1

(1 + gj)−qj/2∏qj
i=1 ν

1/2
ji



×


J∑
j=1

[
gj(J−1 −R2

j ) + J−1 −Q2
j

]
1 + gj


−(N−q0)/2

= k1

J∏
j=1

(1 + gj)−qj/2


J∑
j=1

[
gj(J−1 −R2

j ) + J−1 −Q2
j

]
1 + gj


−(N−q0)/2

,

where Γ[·] denotes the Gamma function and

k1 = Γ[(N − q0)/2] · |XTX|−1/2(π1/2rT r)−N+q0
∏J
j=1

∏qj
l=1 ν

−1/2
jl .

Finally, we are left with the integral w.r.t. g. We have

MM(y) =
∫
RJ+

∫ ∞
0

∫
Rq

∫
Rq0

p(y|β,b, σ2)p(β)p(b|g, σ2)p(σ2)p(g)dβdbd(σ2)dg

k1

∫
RJ+

J∏
j=1

p(gj)(1 + gj)−qj/2


J∑
j=1

[
gj(J−1 −R2

j ) + J−1 −Q2
j

]
1 + gj


−(N−q0)/2

dg

k1∏J
j=1 B(a+ 1, bj + 1)

∫
RJ+

J∏
j=1

g
bj
j

(1 + gj)a+bj+2 (1 + gj)−qj/2

×


J∑
j=1

[
gj(J−1 −R2

j ) + J−1 −Q2
j

]
1 + gj


−(N−q0)/2

dg

To proceed further we make the substitution sj = gj/(1 + gj) so that gj = sj/(1−

sj), dsj = (1 + gj)−2dgj, and (1 + gj)−1 = (1− sj)−1. The sj’s are commonly called
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shrinkage factors in the Bayesian model selection literature. Our integral becomes

MM(y) = k1∏J
j=1 B(a+ 1, bj + 1)

∫
[0,1]J

J∏
j=1

(
sj

1− sj

)bj
(1− sj)a+bj+2+qj

×

 J∑
j=1

{
sj(J−1 −R2

j ) + (1− sj)(J−1 −Q2
j)
}(N−q0)/2

(1− sj)−2ds

= k1∏J
j=1 B(a+ 1, bj + 1)

∫
[0,1]J

J∏
j=1

s
bj
j (1− sj)a+qj

×

 J∑
j=1

{
sj(J−1 −R2

j ) + (1− sj)(J−1 −Q2
j)
}(N−q0)/2

ds

For the summation inside the integral we have

J∑
j=1

{
sj(J−1 −R2

j ) + (1− sj)(J−1 −Q2
j)
}

=
J∑
j=1

{
sj(Q2

j −R2
j ) + J−1 −Q2

j

}

=
1−

J∑
j=1

Q2
j

1−
J∑
j=1

sj
R2
j −Q2

j

1−∑J
j=1 Q

2
j


Defining υj := R2

j−Q
2
j

1−
∑J

j=1 Q
2
j

and α := N−q0
2 our marginal density is

MM(y) = k1∏J
j=1 B(a+ 1, bj + 1)

(1−
J∑
j=1

Q2
j)(N−q0)/2

∫
[0,1]J

J∏
j=1

s
bj
j (1− sj)a+qj

×

1−
J∑
j=1

υjsj

(N−q0)/2

ds = k1∏J
j=1 B(a+ 1, bj + 1)

1−
J∑
j=1

Q2
j

(N−q0)/2

×
J∏
j=1

Γ(bj + 1)Γ(a+ qj/2 + 1)
Γ(α) FA (α, b1 + 1, . . . , bJ + 1, α, . . . , α; υ1, . . . , υJ)

= k1

J∏
j=1

B(bj + 1, a+ qj/2 + 1)
B(a+ 1, bj + 1)

1−
J∑
j=1

Q2
j

(N−q0)/2

× FA (α, b1 + 1, . . . , bJ + 1, α, . . . , α; υ1, . . . , υJ) .

The integral representation we have used for the series can be found in Lauri-

cella [55], Eq. (10). The simplification in the numerator terms (c1 = · · · = cn = α)

came from the choice of bj = (N − q0 − qj − 2a− 4)/2.
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B.2 Alternative Expression For FGAM

In this appendix, we use the results from Appendix B.1 up to the step where we

must integrate w.r.t. g, but consider a different approach for that final integration.

We will only consider the J = 3 case necessary for FGAM and integrate w.r.t. each

component of g separately. Recall, the form of the prior for gj,

p(gj) = g
bj
j (1 + gj)−(a+bj+2)B−1(a+ 1, bj + 1). It will be convenient to consider the

choice bj = (N − q0 − qj − 2a− 4)/2 when computing the Bayes factor.

First considering the integration over g1, we have

∫ ∞
0

∫ ∞
0

∫
Rq

∫
Rq0

p(y|β,b, σ2)p(β)p(b|g, σ2)p(g1)dβdbd(σ2)dg1

= k1B(a+ 1, b1 + 1)
3∏
j=2

(1 + gj)−qj/2

×
∫ ∞

0
ga1(1 + g1)−(a+b1+2+qj/2)


J∑
j=1

[
gj(J−1 −R2

j ) + J−1 −Q2
j

]
1 + gj


−(N−q0)/2

dg1

We transform to the shrinkage factors uj = gj/(1+gj), so that our integral becomes

∫ ∞
0

∫ ∞
0

∫
Rq

∫
Rq0

p(y|β,b, σ2)p(β)p(b|g, σ2)p(g1)dβdbd(σ2)dg1

= k1B
−1(a+ 1, b1 + 1)

3∏
j=2

(1− uj)qj/2
∫ 1

0

(
u1

1− u1

)b1

(1− u1)a+b1+2+q1/2

×


3∑
j=1

[
uj(3−1 −R2

j ) + (1− uj)(3−1 −Q2
j)
]
−(N−q0)/2

(1− u1)−2du1

= (1− u2)q2/2(1− u3)q3/2

{k−1
1 B(a+ 1, b1 + 1)}

∫ 1

0
ub1

1 (1− u1)a+q1/2
{
u1(Q2

1 −R2
1) + c1

}−(N−q0)/2
du1

= (1− u2)q2/2(1− u3)q3/2

{k−1
1 B(a+ 1, b1 + 1)}

c
−(N−q0)/2
1

∫ 1

0
u

(N−q0−q1−2a−4)/2
1 (1− u1)a+q1/2

×
{
u1(Q2

1 −R2
1)/c1 + 1

}−(N−q0)/2
du1 = k1B

−1(a+ 1, b1 + 1)

×
3∏
j=2

(1− uj)qj/2c
−(N−q0)/2
1

[
1 + (Q2

1 −R2
1)/c1

]−b1−1
B[b1 + 1, a+ q1/2 + 1],
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where c1 = 3−1−Q2
1 +∑3

j=2[uj(Q2
j −R2

j ) + 3−1−Q2
j ] and the final equality follows

from Gradshteyn and Ryzhik [36], p. 287, Eq. 3.197#4.

For g2 we have
∫ ∞

0

∫ ∞
0

∫ ∞
0

∫
Rq

∫
Rq0

p(y|β,b, σ2)p(β)p(b|g, σ2)p(g1)p(g2)dβdbd(σ2)dg1dg2

= k2(1− u3)q3/2
∫ 1

0

(
u2

1− u2

)b2

(1− u2)a+b2+2+q2/2c
−(N−q0)/2+b1+1
1

×
{
c1 +Q2

1 −R2
1

}−b1−1
(1− u2)−2du2

= k2(1− u3)q3/2
∫ 1

0
ub2

2 (1− u2)a+q2/2
[
u2(Q2

2 −R2
2) + c2

]−(a+q1/2+1)

×
[
u2(Q2

2 −R2
2) +Q2

1 −R2
1 + c2

]−b1−1
du2

= k2(1− u3)q3/2c
−(a+q1/2+1)
2 (Q2

1 −R2
1 + c2)−b1−1

∫ 1

0
ub2

2 (1− u2)a+q2/2

×
[
u2(Q2

2 −R2
2)/c2 + 1

]−(a+q1/2+1) [
u2(Q2

2 −R2
2)/(Q2

1 −R2
1 + c2) + 1

]−b1−1
du2

= k2(1− u3)q3/2c
−(a+q1/2+1)
2 (Q2

1 −R2
1 + c2)−b1−1B(a+ q2/2 + 1, b2 + 1)

× F1(b2 + 1, a+ q1/2 + 1, b1 + 1, (N − q0)/2; r, s),

where k2 = k1B
−1(a + 1, b1 + 1)B−1(a + 1, b2 + 1)B(b1 + 1, a + q1/2 + 1); c2 =

u3(Q2
3 − R2

3) + 1 − ∑3
j=1 Q

2
j ; r = (R2

2 − Q2
2)/c2; s = (R2

2 − Q2
2)/(c2 + Q2

1 − R2
1);

F1(a, b, c, d; ·, ·) is one of Appell’s bivariate hypergeometric functions

F1(a, b, c, d;x, y) =
∞∑
m=1

∞∑
n=1

(a)m+n(b)m(c)n
(d)m+nm!n! xmyn; (a)n = Γ(a+ n)

Γ(a) ;

and the final equality follows from Gradshteyn and Ryzhik [36], p. 287, Eq. 3.211.

Now because a+ q1/2 + 1 + b1 + 1 = (N − q0)/2, we have

F1

[
b2 + 1, a+ q1

2 + 1, b1 + 1, N − q0

2 ; r, s
]

= (1− s)a+ q1
2 +1

× F
[
b2 + 1, a+ q1

2 + 1, N − q0

2 ; r − s1− s

]
=
(

1− R2
2 −Q2

2
c2 +Q2

1 −R2
1

)a+q1/2+1

F

[
b2 + 1, a+ q1/2 + 1, N − q0

2 ; (R2
2 −Q2

2)(Q2
1 −R2

1)
c2(c2 +Q2

1 −R2
1 +Q2

2 −R2
2)

]
,

139



by [ibid, p. 1054, Eq. 9.182#1] where F (a, b, c; ·) is Gauss’ hypergeometric function

F (a, b, c;x) = (a)n(b)n
(c)nn! x

n.

Finally integrating out u3 (g3), we arrive at the stated marginal density for

FGAM

MFGAM(y) = k2B(a+ q2/2 + 1, b2 + 1)
B(a+ 1, b3 + 1)

∫ 1

0
ub3

3 (1− u3)a+q3/2c
a+q1/2+1
2

× (Q2
1 −R2

1 + c2)−b1−1
(

1− R2
2 −Q2

2
c2 +Q2

1 −R2
1

)a+q1/2+1

× F
[
b2 + 1, a+ q1/2 + 1, N − q0

2 ; (R2
2 −Q2

2)(Q2
1 −R2

1)
c2(c2 +Q2

1 −R2
1 +Q2

2 −R2
2)

]
du3

= k2B(a+ q2/2 + 1, b2 + 1)
B(a+ 1, b3 + 1)

∫ 1

0
ub3

3 (1− u3)a+q3/2c
a+q1/2+1
2

× (Q2
1 −R2

1 + c2)−(N−q0)/2
(
c2 +Q2

1 +Q2
2 −R2

1 −R2
2

)a+ q1
2 +1

× F
[
b2 + 1, a+ q1

2 + 1, N − q0

2 ; (R2
2 −Q2

2)(Q2
1 −R2

1)
c2(c2 +Q2

1 −R2
1 +Q2

2 −R2
2)

]
du3.
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