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Variational Message Passing for Elaborate
Response Regression Models

M. W. McLean and M. P. Wand

Abstract. We build on recent work concerning message passing approaches to
approximate fitting and inference for arbitrarily large regression models. The focus
is on regression models where the response variable is modeled to have an elab-
orate distribution, which is loosely defined to mean a distribution that is more
complicated than common distributions such as those in the Bernoulli, Poisson
and Normal families. Examples of elaborate response families considered here are
the Negative Binomial and ¢ families. Variational message passing is more chal-
lenging due to some of the conjugate exponential families being non-standard and
numerical integration being needed. Nevertheless, a factor graph fragment ap-
proach means the requisite calculations only need to be done once for a particular
elaborate response distribution family. Computer code can be compartmentalized,
including that involving numerical integration. A major finding of this work is
that the modularity of variational message passing extends to elaborate response
regression models.
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1 Introduction

We extend the variational message passing (VMP) body of work to accommodate elab-
orate response regression models. The notion of factor graph fragments, introduced in
Wand (2017), is the vehicle for this extension. It affords a modular approach to mean
field variational Bayes fitting and inference for large regression models. The factor graph
fragment updates treated here only need to be derived and implemented once. Their
addition to the variational message passing arsenal allows for fancier models, such as
those having Negative Binomial and ¢ responses, to be fitted.

VMP (Winn and Bishop, 2005; Minka, 2005; Minka and Winn, 2008) is a prescription
for obtaining mean field variational Bayes approximations to posterior density functions
that is amenable to modularization. The factor graph version of VMP (e.g Minka and
Winn, 2008, Appendix A) is particularly attractive in this regard. Wand (2017) uses the
notion of factor graph fragments to aid modularization for semiparametric regression
models — a large class of regression-type models that includes, for example, general-
ized linear mixed models, generalized additive models and varying coefficient models
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2 Variational Message Passing for Elaborate Regression

(e.g. Ruppert et al., 2003). However, the fragments in Wand (2017) only accommodate
Gaussian, Bernoulli and Poisson response models. If, for example, a Negative Binomial
response model is of interest then new fragment updates for this family are needed. Sec-
tion 3.1 plugs this gap. Other elaborate response families are also treated in Section 3.
Whilst we do not cover all possible families, our derivations for some elaborate families
provide blueprints for future fragment derivations.

A major difference between simple response models and elaborate response models
is that the latter involves non-standard exponential families. For the examples covered
here four exponential families, beyond those covered in Wand (2017), emerge. Two of
them seem to have little or no presence in the literature. The sufficient statistic expec-
tations, which are needed for VMP updates, are not expressible in terms of common
functions and require either evaluation of special functions, quadrature or continued
fraction approximation.

The main contributions of this article may be summarized as follows:

1. If an analyst wants to build a mean field variational Bayes inference engine for
arbitrarily large regression models then the message update formulae given in
Section 3 allow for particular elaborate response families to be included;

2. The derivations in Section S.3 of the online supplement show how such update
formulae can be obtained for the examples given in Section 3. They also serve as
a template for handling other elaborate response likelihoods not covered here.

All of our new methodology is within the realm of deterministic variational ap-
proximate inference, with intractable integrals evaluated via quadrature. An alternative
route is to use Monte Carlo methods to approximate such integrals, known as stochastic
variational inference (e.g. Hoffman et al., 2013; Kucukelbir et al., 2017). See, for exam-
ple, Titsias and Lazaro-Gredilla (2014) on the use of stochastic variational inference for
non-conjugate circumstances similar to those arising in this article.

Some background on VMP is given in Section 2. Section 3 is the article’s centerpiece
and gives the fragment update for six elaborate response likelihoods. Illustration of their
utility is then provided in Section 4. Closing remarks are given in Section 5. Derivational
details are given in an online supplement.

2 Variational Message Passing and Factor Graph
Fragments

Variational message passing (VMP) is an approach to obtaining mean field variational
Bayes approximate posterior density functions in potentially large graphical models. It
uses the concept of message passing on a factor graph.

Our starting point is a Bayesian statistical model with observed data D and param-
eter vector . The posterior density function p(8|D) is usually analytically intractable
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M. W. McLean and M. P. Wand 3

and a mean field variational approximation ¢*(0) to p(@|D) is the minimizer of the

Kullback-Leibler divergence
q(6) }
0)lo de
f o 57

subject to the product density restriction ¢(0) = Hf\il q(0;) where {01,...,0\} is
some partition of 8. The optimal g-density functions can be shown to satisfy

¢ (8:) % Eyonon {p(8,]D,0\0,)}, 1<i< M, (2.1)

where 6\, denotes the entries of @ with 6; omitted. Expression (2.1) gives rise to
an iterative scheme for determination of the optimal parameters of the ¢*(6;), which
is known as mean field variational Bayes. A listing of such a scheme is provided by
Algorithm 1 of Ormerod and Wand (2010).

fs 6,

Figure 1: Factor graph representation of the dependence of the stochastic nodes
01,...,09 on the factors fi,..., f11 for the example given by (2.2).

VMP arrives at the same approximation via message passing on an appropriate
factor graph. Figure 1 is an example factor graph corresponding to an M = 9 example
with

p(01,...,09, D)= f1(01)f2(01,02,09)f3(06,07,05,09) f1(02,03,04) [5(05, 09) (2.2)
x f6(05) f7(03) f3(06) fo(07) f10(04) f11(Os). '

At least one of the f; involves the data vector D, but this dependence is suppressed.
The unshaded circles are called stochastic nodes and the shaded rectangles are the
factors. The word node is used for either a stochastic node or a factor and two nodes are
neighbors of each other if they are joined by an edge. The edges join factors to stochastic
nodes that are included in that factor. The 6; indices connected to the jth factor are
denoted by neighbors(j). For example, neighbors(3) = {6,7,8,9}. Fuller details are in
Sections 2.4 and 2.5 of Wand (2017).

A message passed between any two neighboring nodes is a particular function of the
stochastic node that either sends or receives the message. Rather than using (2.1), the
optimal g-densities are obtained from

q"(0;) o 11 my _e,(0:) (2.3)

j:i€neighbors(j)
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4 Variational Message Passing for Elaborate Regression

where the m?jaei (8;) are the optimal messages passed to 6; from each of the fac-
tors f; in p(@, D) that involve ;. For each j, this subset of {1,..., M} is denoted by
neighbors(j) due to the definition of a factor graph, in which an edge is drawn between
the 0; and f; nodes if and only if f; depends on 6;.

Letting N denote the number of factors, for each 1 <i < M and 1 < j < N the
VMP stochastic node to factor message updates are

mMe,— f, (01) — X H mfj/*’9i<0i) (24)
j'#3j:i€neighbors(j’)

and the factor to stochastic node message updates are
My, —e,(0;) < o< exp {Efjﬂei { log fj(gneighbors(j) )H (2.5)
where Ey, g, denotes expectation with respect to the density function
H My, e, (0i) Mo, —r;(0i)
i’ Eneighbors(5)\ {i}

H /mfjeei, (@) Mg, —5,(0:)dO;

i/ €neighbors(j)\{¢}

In (2.4) and (2.5) the «— o symbol means that the function of 8; on the left-hand side is
updated according to the expression on the right-hand side but that multiplicative fac-
tors not depending on 6; can be ignored. If neighbors(j)\{:} = 0 then the expectation in
(2.5) can be dropped and the right-hand side of (2.5) is proportional to fj (@neighbors(j) )-

VMP fitting involves iteration of the updates (2.4) and (2.5)-(2.6) over each of the
factors until the changes in all messages are negligible. When convergence is reached,
the optimal g-densities of the model parameters are obtained from (2.3).

The algebra and coding for VMP can be compartmentalized using the notion of
factor graph fragments, or fragments for short.

Definition: A factor graph fragment, or fragment for short, is a sub-graph of a factor
graph consisting of a single factor and each of the stochastic nodes that are neighbors
of the factor.

In the context of the current article, the fragment approach means that switching
from a large regression-type model with a Gaussian likelihood to one with, say, a ¢
likelihood can be achieved by replacing the Gaussian likelihood fragment by ¢ likelihood
fragments. The remainder of the model is unaffected in terms of the VMP updates.

Table 1 of Wand (2017) lists five fragments that are fundamental to semiparametric
regression analysis via VMP. As explained there, a wide range of semiparametric re-
gression models are accommodated by these five fragments but only for the Gaussian
response case. In Section 5 of Wand (2017), additional fragments are introduced to
handle logistic, probit and Poisson regression models. The next section adds to these
response fragments.
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M. W. McLean and M. P. Wand 5

3 Fragment Updates for Elaborate Response
Likelihoods

We now provide fragment updates that allow for six more response distributions to be
handled within the VMP framework. Most of them may be viewed as elaborations of
the likelihoods covered by Wand (2017). For example, the Negative Binomial likelihood
extends the Poisson likelihood for count response data and the ¢ and Skew Normal
likelihoods extend the Gaussian likelihood in different ways.

Each of the elaborate response likelihoods considered in this section are re-expressed
in terms of auxiliary variables and more common distributions. This affords tractability,
but comes at the cost of less accuracy compared with the case where auxiliary variables
are not introduced. The auxiliary variables route is driven by the practical advantages
of message updates being either closed form or requiring only univariate numerical
integration. The alternative route, without auxiliary variables, is much more numerically
challenging and often impractical.

Table 1 provides details on each of the distributions used in this article. It uses the
following notation for the N (0, 1) density and cumulative distribution functions:

6(@) = (21) 2 exp(—12?) and B(z) = [ "ot dt.

An additional functional notation is digamma(z) = % log{T'(x)}.

For a vector a and scalar function s we let s(a) denote the vector containing the
element-wise evaluations of s. Also, A ® B and A/B respectively denote the element-
wise product and element-wise quotient of vectors A and B having the same sizes. If A
is a d x d matrix then vec(A) is the d? x 1 vector obtained by stacking the columns of A
underneath each other in order from left to right. If a is a d? x 1 vector then vec™!(a)
is the d x d matrix formed from listing the entries of @ in column-wise fashion in order
from left to right. The d x 1 vector containing the diagonal entries of a d X d matrix A
is denoted by diagonal(A).

The d x 1 vector 14 is such that all of its entries are equal to 1. The d x 1 vector e;
is such that its ith entry is equal to 1 and all other entries are zero.

For a d x 1 vector v; and a d? x 1 vector vy such that VeC_l(’Ug) is symmetric we
define:

Gown ([ 22] s@ms) == n(@tvec (o)) forof free (021} 7~ 211)

—%TT{Vec’l(vg)}*lvl — %5.

The secondary arguments of Gyyp are a d X d matrix @, a d x 1 vector r and s € R.
The genesis of the Gy function is the fact that

EB{_%(OTQH —2rte + S)} = Gur(m; Q, T, 5)
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6 Variational Message Passing for Elaborate Regression

distribution density /probability function in z abbreviation
K K
Multinomial H wzk; . =0,1, 1<k <K; Zwk =1 Multinomial(1, )
k=1 k=1
Poisson Xe Mzl £=0,1,...; A>0 Poisson())
Negative K
F T
Binomial KT A+ R)p ;x=0,1...; k,u>0 Negative-Binomial(u, k)
T(k)(k + u)'(z+1)
T(tl
t ( 2 ) i o v >0 t(u,o,v)
VAL (v/2)[1 + {(z — p)/o}? /v] 2
Asymmetric
Laplace # exp [—% ‘ I;”| + (r— %) (z;“)}, Asymmetric-
c>0, 0<7<1 Laplace(u, o, 7)
Skew
2 - Az —
Normal —¢ (aC M) P ( (@ ,u)); oc>0 Skew-Normal(u, o, A)
o o o
Finite Normal K
Mixture Z Lk ¢ (w) ; Normal-Mixture(u, o, w, m, s)
O Sk Sk
k=1

K
Wk, Sk > 0, E wg =1
k=1

BA mA—le—Bz
Gamma W; x>0, A,B>0 Gamma(A, B)
(A/2)"/2 p—(K/2)=1c—(N/2)/x

Inverse-x? ;
I'(x/2)

x>0; k,A>0 Inverse-x2(k,\)

Table 1: Distributions used in this article and their corresponding density/probability
functions.

when 0 is a d x 1 Multivariate Normal random vector with natural parameter vector 7.
A last piece of notation is

Nico =MNyo+ Moy

for any natural parameter 1), factor f and stochastic node 6.

3.1 Negative Binomial Likelihood

The Negative Binomial likelihood fragments are concerned with the likelihood specifi-
cation

yi|0, k ' Negative-Binomial[exp{(A8);},x], 1<i<n. (3.1)
Introduce Gamma auxiliary random variables a;| 0, s "~ Gammalk, & exp{—(A80);}],
1 <4 < n. Then standard distribution theoretical manipulations lead to (3.1) being

equivalent to

yi| a; '~ Poisson(as), a;] 6,k '~ Gammalk, k exp{—(A8);}].
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M. W. McLean and M. P. Wand 7

The relevant factor graph fragments are shown in Figure 2 and corresponds to the mean
field restriction

q(6,5,a) = q(6)q(x) {H q(ai)}
i=1
that was used in Luts and Wand (2015).

p(yla)

Figure 2: Fragments for the Negative Binomial likelihood specification with independent
Gamma auziliary variables ay, . .., ay,.

First note that
mp(aw’n) — 9(0) = exp [ — Eq(ﬁ)(li){lea + Eq(a) (a)T exp(—A 0)}} (3.2)

which is not conjugate with Multivariate Normal messages passed to @ from other
factors. Instead, we replace (3.2) with

(7]
vec(66”

T
Mp(a|6, k) — 0(0) = exp ) ] np(a\ 0,k) — 0 (3.3)

to enforce conjugacy with Multivariate Normal messages. This is an instance of non-
conjugate VMP (Knowles and Minka, 2011). We assume that each of the messages
that @ receives from factors outside of the Negative Binomial likelihood fragments are
within the Multivariate Normal family. This leads to ¢*(0) having a Multivariate Normal
distribution.

As explained in Section S.3.1 of the online supplement, the message from p(a|8, k)
to K takes the form

rlog(r) —log{I'(r)}

Mp(a|0, k) — H(H) = exp o np(a| 0,k) = K

which is proportional to the Moon Rock exponential family of density functions de-
scribed in Section S.2.4 of the online supplement. We assume messages passed to
from factors outside of the Negative Binomial likelihood fragments are also within the
Moon Rock family or at least conjugate with the Moon Rock family. For example, if
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8 Variational Message Passing for Elaborate Regression

the only other factor passing messages to k is its prior density function p(x) then we
require that p(k) is a Moon Rock density function or conjugate with one. Note that, for
example, Exponential density functions (Gamma(1, B) density functions in the notation
of Table 1) are conjugate with respect to the Moon Rock family but, strictly speaking,
not within the Moon Rock family since o = 0 in the notation of Section S.2.4. Hence,
setting

p(k) = Bexp(—Bk), k>0,

for any B > 0 is permissible under the conjugacy constraint since it implies that

0
Mp(k) — x(K) = exp . _B

klog(k) —log{T'(x)} ]T

which is conjugate with respect to M,(q| 6, x) — x(%)-

Algorithm 1 lists the inputs, updates and outputs for the Negative Binomial like-
lihood fragments. The derivations are given in Section S.3.1 of the online supplement.
The (ET)Y™ notation, used in the first update, is explained in Section S.2.4 of the online
supplement.

In Section 4.2 we provide illustration of Algorithm 1 in the context of additive model
analysis.

3.2 t Likelihood

The t-distribution likelihood fragments arise from the likelihood specification
yi| 0, 0,0~ t((AB)i,U, 1/), 1<i<n. (3.4)

This likelihood is frequently used in regression applications as a robustness mechanism
(e.g. Lange et al., 1989). If we introduce Inverse-y? auxiliary random variables a; e~

Inverse-x%(v,v), 1 <i <mn, then (3.4) is equivalent to
yi| 0,02, a; '~ N((AO),», aiaz), a;| v % Inverse-x2(v, v). (3.5)

It is common to use this representation of the ¢ distribution for Bayesian computing. For
example, the Markov chain Monte Carlo scheme of Verdinelli and Wasserman (1991)
and the mean field variational Bayes scheme of Tipping and Lawrence (2003) each rely
upon (3.5).

Figure 3 shows the factor graph fragments for the auxiliary variable representation
(3.5) with g-density product restriction

q(0,0”,v,a) = q(8)q(c?)q(v) {H q(ai)} :
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M. W. McLean and M. P. Wand 9

Data Inputs: y, A.

Parameter Inputs: 7),,(q| 9, x) — 6:110 — p(a|6, ) Tp(al 6, k) — > Tk — p(al 6, x)"
Updates:
Ha(r) < (ET)3" (np(a| 0,K) — H)

w1 — —%A{Vec_l ((np(a\ 0) 9)2> }71 (Mp(ale) — 6),
wg «—— exp ( —wi — %diagonal [A{Ve(f1 ((np(a\ 0) — 0)2) }_1AT})

w3 — {w2 ©] (y + )u‘q(n)ln) }/(ln + Hq(r) “’2)

AT{w3 0 (1n +w1) —1n} ]

n M (k)
p(al6,x) — 6 ! —%Vec(ATdiag(wg)A)

n

np(a\ 0,k) =k lg{digamma(ﬂq(wln + y) —w

—log (1n + /,Lq(K)LUz) — wg}

Parameter Outputs: T’p(a| 0,r) — 6 T’p(a| 0, k) — k'

Algorithm 1: The inputs, updates and outputs of the Negative Binomial likelihood frag-
ment.

Figure 3: Fragments for the t likelihood specification with the shape parameter prior with
independent Inverse-x2(v,v) auziliary variables a1, ..., ayp.

The message from p(y|@, 02, a) to 0 is proportional to a Multivariate Normal density
function, while that from p(y|0, 0%, a) to o2 is within the Inverse-x? family.
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10 Variational Message Passing for Elaborate Regression

The message from p(a|v) to v has the form
T
B (v/2) log(v/2) — log{T(v/2)}
Mp(ajv) — (V) = exp V)2 plalv) —v
with details given in Section S.3.2 of the online supplement. Note that mq,) — ()
is proportional to a factor of 2 rescaling of the Moon Rock exponential family of density
functions introduced in Section S.2.4 of the online supplement. The conjugacy constraint
dictates that
T
B (v/2)log(v/2) —log{I'(v/2)}
m, p(a|u)(V) = €xp v/2 v — p(a|v)
which occurs if all message passed to v from factors outside of the ¢ likelihood fragments
are also within the same rescaled Moon Rock family, or at least conjugate with respect
to it. The (ET)Y™ notation is defined in Section S.2.4 of the online supplement.

Algorithm 2 provides the inputs, updates and outputs for the ¢ likelihood fragments.
The derivations are given in Section S.3.2 of the online supplement.

3.3 Asymmetric Laplace Likelihood
Now consider the Asymmetric Laplace likelihood specification
yi| 0,0 " Asymmetric-Laplace((A0);,0,7), 1<i<mn, (3.6)

where 0 < 7 < 1 is a fixed constant. As explained in, for example, Yu and Moyeed
(2001), the likelihood specification (3.6) corresponds to rTth-quantile regression. Yang
et al. (2016) discuss valid posterior inference for Bayesian quantile regression.

If we introduce auxiliary random variables a; '~ Inverse-x?(2,1), 1 < i < n, then
Proposition 3.2.1 of Kotz et al. (2001) implies that (3.6) is equivalent to

1
10,0%a % v ((40), + 2
vil8,07a <( )’Jrair(l—T)’aiT(l—T)

—T)o o?

) . a; ~ Inverse-x3(2,1).  (3.7)

We assume that the optimal g-density admits the product restriction

n

q(6,0%,a) = q(0)q(c”)q(a) = q(0)q(c®) [ | a(as).

i=1
The corresponding factor graph fragments are shown in Figure 4.

As shown in Section S.3.3 of the online supplement,

T
0
My(y|0,0%,a) — 6(8) = exp [ vec(607) ] My 6,02,a) — 0
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M. W. McLean and M. P. Wand 11

Data Inputs: y, A.
Parameter Inputs: np(y| 0,02, a) — oMo _ p(yl 0,02,a)’np(y| 0,02, a) — o2

Mo2 = p(yl 6,02, a) Tplalv) — v T — p(alv):
Updates:

Hq(1/02) {(np(y|0,02,a) - 02)1 + 1}/(np(y| 0,02%,a) « 02>2
ta() < 2(ET)™ Mp(a|v) o 1)

AT, T T, ,T 2
Wy — [ Gvmp (’r’p(y\ 0,02,a) — O’A eie; A, A" eje; y,y,-) ]

(Hgv) + D1n
Ba)ln = 2pq(1/02)wa

AT diag(ws)y }

np(y‘ 0,0%,a) — 0 Ha1/o?) |: —%VGC(ATdiag(w5)A)

1,
2 — | Gvwr (np(y| 0,02, a) < 6’ AT diag(ws) A,

Mp(y16,0%,a) — o
AT diag(ws)y, deiag(tds)?;)

n

— . vy +1
T’p(a\ V) — v n digamma (%) — 15{ log (% Hg()n — ,uq(l/(,z)um)
+w5}

Parameter Outputs: np(yl 0,0%,a) — 0’np(y\ 0,02,a) — 02777p(a‘ V) — v

Algorithm 2: The inputs, updates and outputs of the t likelihood fragment.

which is conjugate with Multivariate Normal messages passed to 8 from factors outside
of the Asymmetric Laplace likelihood fragments.

However, the message from the likelihood factor to o2 takes the form
log(c®)
2
Mp(y)0,0%,0) 02 (0) =X\ | 1/0 | Thyiy)o,02 a) - o2

1/0?

. . . . . . 2 .
which is not within a standard exponential family. However, My 6,02, a) — o2 (0?) is
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12 Variational Message Passing for Elaborate Regression

Figure 4: Fragments for the Asymmetric Laplace likelihood specification with independent
Inverse-x2(2, 1) auziliary variables a1, . .., a,.

proportional to the family of density functions of random variables such that their re-
ciprocal square roots are distributed according to members of a family proposed in
Nadarajah (2008). Sections S.2.2 and S.2.3 of the online supplement contain the rel-
evant details. We will assume that messages passed to o2 from factors outside of the
Asymmetric Laplace likelihood fragments are within the Inverse Square Root Nadara-
jah family (Section S.2.3 of the online supplement). Note that messages proportional to
Inverse Chi-Squared density functions are conjugate with this family.

Algorithm 3 provides the inputs, updates and outputs for the Asymmetric Laplace
likelihood fragments with derivations deferred to Section S.3.3 of the online supplement.
Note that the second update of Algorithm 3 involves the function R,, which is defined
in Section S.1.2 of the online supplement. Efficient and stable computation of R, is
discussed there.

In Section 4.1 we show that Algorithm 3 facilitates quantile nonparametric regression
embellishment of ordinary nonparametric regression.

Laplace Likelihood Special Case

The case of 7 = % corresponds to the special case of the Laplace likelihood, and (3.6)

reduces to median regression. In this special case, the second entry of UM 2

is zero and messages passed to o2 are proportional to Inverse Chi-Squared density
functions. In addition, the p4(1/5) update in Algorithm 3 is not needed and that for
Hq(1/02) Teduces to

Hq(1/0?) < {(np(y|0,02,a) — 02)1 + 1}/(7710(3/\0,02,@) — 02)2'

where My( 2 is an Inverse Chi-Squared natural parameter vector.

3.4 Skew Normal Likelihood

In this section, we consider fragments involving the Skew Normal likelihood:

yi| 0,0%, X ~ Skew-Normal{(A8);,0,\}, 1<i<n. (3.8)
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M. W. McLean and M. P. Wand 13

Data Inputs: y, A, 7.

Parameter Inputs: np(y| 0,02, a) — oMo _ p(yl 97027(1),7]02 — p(y| 8,02, a)
T’p(y\ 0,0%,a) — o2

Updates:

Hq(1/o) < (ET)I2$RN (np(y| 0,0’2, a) & 0'2>

ISRN

o EDE™ (Mg 6,02, a) - 2)

AT T T, Ty o2
w7 — [ GVMP(’r’p(y‘B’02,Q)<—>0’A eie; A, A7 eze; y,yi) i|1<1§n

—1/2
Lq)s<—{—87’2(1—7')2}1/(1(1/0.2)&17} /

AT diag(ws)y
1—
’I’]p(y‘ 0,0%,a) =0 T = Thg(1/02) 7%vec (ATdiag(wg)A)

AT, }

+(T7%)'u'q(l/a) |: 0

i —n/2 -
-1
(% —7) |:y + %A{vec*1 ((np(y| 0, 0’2,a) o 0)2) }
T
Moy 0,07 a) — 0> My 6,02, a) - 0)1] 1n

(1 = 7)Gvme (np(y| 0,02,a) < 0’ AT diag(ws)4,

AT diag(ws)y, y" diag(ws)y

Parameter Outputs: np(y| 0,02,a) — 9’np(y\ 0,0%,a) — o2

Algorithm 3: The inputs, updates and outputs of the Asymmetric Laplace likelihood
fragments.

Regression-type models having Skew Normal responses may be found in, for example,

Frithwirth-Schnatter and Pyne (2010) and Lachos et al. (2010).

If we introduce auxiliary random variables a; N (0,1), 1 < i < n, then Proposi-

imsart-ba ver. 2014/10/16 file: evmpBA.tex date: February 14, 2018



14 Variational Message Passing for Elaborate Regression

tion 3 of Azzalini and Dalla Valle (1996) implies that (3.8) is equivalent to
16,0\, a; = N (AB)»—&—M o a; < N(0,1) (3.9)
yl 9 ) 9 (2 7 m’ 1 + )\2 ) K2 ) - -

We assume the optimal ¢-density admits the product restriction

n

(0,0, ), a) = q(0)q(c*)g(Ng(a) = q(0)q(c*)a(N) [ ] a(a:).

=1

The corresponding factor graph fragments are shown in Figure 5.

Figure 5: Fragments for the Skew Normal likelihood specification with independent
N(0,1) auziliary variables ay, ..., ay, .

The messages passed from the likelihood factor to 8 and o? take the forms

T
Moy (416,027, a) — 0(0) = €xp l Vec(ZgT) ] Moy 6,02, A, a) — 0
and
log(o?)
Myy10,0% 0 0) — 02 (@) =D | 1o | Myy10,02 5 0) - 02
1/0?

As for the Asymmetric Laplace likelihood fragments, the latter is within the Inverse

Square Root Nadarajah family. The imposition of conjugacy means that we assume

that all messages passed to o2 from factors outside of the Skew Normal likelihood

fragments are also proportional to Inverse Square Root Nadarajah density functions.
The message from the likelihood factor to A has the exponential family form

log(1+A2) 17

_ 2
mp(y\ 0,02, )\ a) — A()‘) = &xp A T’p(y| 0,02, )\ a) — \

A1+ A2

We have not been able to find any mention of this family in the literature. In Section
S.2.5 of the online supplement we dub it the Sea Sponge family. We assume that each
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M. W. McLean and M. P. Wand 15

of the messages that A receives from factors outside of the Skew Normal likelihood
fragments are also proportional to Sea Sponge density functions. As an example, suppose
that the only other factor that sends a message to A is the prior density function p(\).
Then, M,y A(A) = p(A) and, under conjugacy, p(A) must be of the form

log(1+A2) 1"

A2
A1+ A2

p(A) o< exp U (3.10)

for some 3 x 1 vector 7. Priors of the form A ~ N(0,0%) are allowable under conjugacy
constraints since these are a special case of (3.10) with 9, =[0 —1/(20%) 0]7.

The message natural parameter updates depend on the first derivative of

¢(x)

O(x)

Software such as the function zeta() within the package sn (Azzalini, 2017) of the R
computing environment (R Core Team, 2017) supports stable computation of ¢’.

¢(z) =log{2®(x)} which leads to ('(z) =

Algorithm 4 provides the inputs, updates and outputs for the Skew Normal likelihood
fragments. The (ET)5° and (ET)5° notation is explained in Section S.2.5 of the online
supplement.

Justification for Algorithm 4 is given in Section S.3.4 of the online supplement.

3.5 Finite Normal Mixture Likelihood
The Finite Normal Mixture likelihood fragments involve the likelihood
il 0,02 % Normal—Mixture((AH)i,J, w,m, s), 1<i<n, (3.11)

where w, m and s are each constant K x 1 vectors. Finite Normal Mixture approx-
imation of difficult response density functions can be a “last resort” for development
of tractable Bayesian inference algorithms. See, for example, Frithwirth-Schnatter and
Wagner (2006) and Frithwirth-Schnatter et al. (2009). In the variational inference con-
text, Wand et al. (2011) showed how Finite Normal Mixture approximation benefits
variational inference for Generalized Extreme Value response models.

If we introduce auxiliary random variables a; = (a;1,...,a;x)? such that
a; '~ Multinomial(1,w), 1<i<n,
then we can re-express (3.11) as

p(y| 050270'17 .. '7an) =

X . 2 ik
H I1 [01(2%8%)1/2 exp {_22,% ((y—gA@)z - mk) H r(3.12)

a; ™5 Multinomial(1, w).

imsart-ba ver. 2014/10/16 file: evmpBA.tex date: February 14, 2018



16 Variational Message Passing for Elaborate Regression

Data Inputs: y, A.

Parameter Inputs: 1,1 52 5 a) — 6' Mo — p(y| 6,02, 7, a) Tp(y| 6,02, ), a) — o2
o2 = p(y| 0,7, 02,a) p(y| 6,02, 7, a) — XTI\ = p(y| 6,02, 2, 0)°
Updates:

Hata/e) — (ET)P™ (T'p(yl 0,0%,a) < 02)

ISRN

Hat1/e) — (B3 (np(yIG,ch,a) © 02)
Hax2) — (BT)S* (M40 0,07, 1, a) — 2)

SS
ooz (BT)3 (np(yIO,UQ,/\, a) < Y,

w10 — Y+ %A{vecfl ((T'p(yl 0,02\, a) — 0)2) }_1 (np(y\ 0,02, )\, a) < 0),

w11 «— Gvup (np(y\ 0,02, )\, a) < 6 AT A ATy, yTy)

Hq(1/o) B w10 /
oy o IO Fao i) s o w12t @)
V12 VARNICS)

ATy
Npy|0,0%,x,a) — 6 {1+ 1g(x2) Hg(1/02) —%vec(ATA)

ATwi
7“(1()\1 /)\2+1)M‘Z(1/‘7) 0

—n/2
n 2 2 K ) w1T0w13
p(y|0,0%,X,a) = o a(AV/14+22)
{1 Jr'L‘¢1(>\2)}“)11
n/2

n+ 1T [wi2 © {wiz + ¢ (w12)}]
2{1+ pg(r2)t
Hq(1/0) W1oW13

np(y‘ 0702’)‘70’) — A - #Q(1/02>w11 -

Parameter Outputs: np(y| 0,02\, a) — 6’ np(y| 0,02, ), a) — 02’np(y| 0,02, a) — A

Algorithm 4: The inputs, updates and outputs of the Skew Normal likelihood fragments.

Even though the a; are vectors, we will use the abbreviation a = ag, ..., a, from now
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M. W. McLean and M. P. Wand 17

onwards. The ¢-density product form we consider is

n

4(6,0%, a) = q(8)q(c*)q(a) = ¢(0)q(c*) [ ] a(a:).

i=1

The factor graph fragments for the Finite Normal Mixture likelihood are shown in
Figure 6.

p(a)

aq ap

p(yl(b,(sz,a)

Figure 6: Fragments for the Finite Normal Mixture likelihood specification with indepen-
dent Multinomial(1, w) auziliary variables ay, ..., ay,.

As in Sections 3.3 and 3.4, the conjugate distribution for o2 is the Inverse Square

Root Nadarajah distribution (Section S.2.3 of the online supplement).

The inputs, updates and outputs for the Finite Normal Mixture likelihood fragments
are listed in Algorithm 5, and justifications are in Section S.3.5 of the online supplement.

3.6 Support Vector Machine Pseudo-likelihood

Luts and Ormerod (2014) derived mean field variational Bayes algorithms for support
vector machine classification using the auxiliary variable representation of the hinge
loss psuedo-likelihood of Polson and Scott (2011). The approach is founded upon the
following result:

/OO (27 a)"/2 exp {—M} da = exp{—2(1— ), } (3.13)

0 2a

where uy = max(0,u) for any u € R. Letting I(P) be the indicator of whether the
proposition P is true, note that (3.13) can be re-expressed as follows:
if p(x]a) is the N(a + 1,a) density function in z and p(a) = I(a > 0) then
- (3.14)
p(z) = |7 p(xla)p(a) da = exp{—2(1 — x)4 }.

In (3.14) the pseudo-density function p(x) is represented as a mixture of a particular
Normal density function and the auxiliary variable pseudo-density function p(a). As we
will see, such a representation is amenable to the VMP updating equations with pseudo-
density functions treated as ordinary density functions. As explained in Polson and Scott
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18 Variational Message Passing for Elaborate Regression

Data Inputs: y, A, K, w,m,s.
Parameter Inputs: 1,y 9,52, a) — "9 — p(y|0,0%,a) Tp(y| 6,0, a) — o>
Updates:

Ha(1/a) — (ET)3™N (np(y| 0,02,a) — 02); Ha(1/02) — (BT)g™N (np(y| 0,02,a) & 02)

—1
1 —1
w15<;y+§A{veC ((np(y\ﬂ,az,a)‘—’g)Q)} (np(y\e,a2,a)<—>9)l
AT, T T, ., T 2
wie «— [ G (np(yIG,UQ,a)HO’A cie; A AT eie; y’yi) Lglgn

T T T
Q17— po/oyw1s(Mm/s?)" + iy jonywie(1x/52) " + 1n{ log(w/s) — (m?)/(25%) }

Qg «— exp(Q7)/{exp(Q17)1x1%} ; wig — Qs(1x/s?)

ATdiag(wi9)y ATQ15(m/s?)
T’P(y| 6,0%a) — 6 Ha(1/o2) —%vec(ATdiag(wlg)A) Ha(1/e) 0
—n/2
wﬂﬂlg(m/sQ)

Moy 0.0% a) = o | Gy ("7p<y\ 8,02, a) — g3 AT diag(wio)A,

AT diag(w19)y, deiag(wm)y)

Parameter Outputs: 7] 2.

p(y] 0,02, a) — 0 p(y|0,02,a) — &

Algorithm 5: The inputs, updates and outputs of the Finite Normal Mixture likelihood
fragments.

(2011), the hinge loss pseudo-density function could be replaced by an ordinary density
function via normalization. However, the pseudo-density function version leads to the
traditional support vector machine classifier.

The Support Vector Machine pseudo-likelihood fragments are concerned with the
pseudo-likelihood specification

B(y16) = T expl-2{1 — (29 — 1)(46),}4] (3.15)
i=1

where the y; € {0,1} are indicators of class membership in a two-class classification
setting. If we now introduce an auxiliary variable vector a = (aq,...,a,) with entries
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M. W. McLean and M. P. Wand 19

a;, 1 < i < n, with each independently having the pseudo-density function p(a;) =
I(a; > 0) then, using (3.14), (3.15) is equivalent to

h(y|a,0) = - ma;) Y2 ex ,{1 +a; — (2y; — 1)(A0),}?
i(yla,0) —};[1(2 N2 e { o o
pla)= HI((IZ‘ > 0).

i=1

The corresponding factor graph fragments are shown in Figure 7.

Figure 7: Fragments for the Support Vector Machine pseudo-likelihood specification with
independent auziliary variables a = (aq, ..., a,) having psuedo-density function p(a) =

I~ I(ai > 0).

Under the assumption that all messages passed to 8 are Multivariate Normal, Al-
gorithm 6 provides updates for the natural parameter vector passed from p(y|0,a) to
0. An attractive feature of the Support Vector Machine pseudo-likelihood fragment
updates is that each of them are simple closed form operations.

4 |llustrations

We now provide some illustrations of how the fragment updates of Section 3 can be
used to move from one variational inference analysis to another, without having to start
from scratch.

4.1 Ordinary to Quantile Nonparametric Regression

First consider ordinary nonparametric regression via the Bayesian mixed model-based
penalized spline model used in Section 3.2.1 of Wand (2017). We quickly recap the
details here. The data are the predictor/response pairs (x;,y;), 1 < i < n, and the
nonparametric regression model is:

yilf, o2 (f(z:),02),
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20 Variational Message Passing for Elaborate Regression

Data Inputs: y, A.

Parameter Inputs: nﬁ(m 0,a) — 6 Mo _, By 8, a)

Updates:

w20 «— _%A{Vec_l ((nﬁ(?ﬂ 0,a) — 9)2> }71 (np(y\ 9,a) < 9)1]

wo1 — —%diagonal [A{vec’1 ((np(y‘ 0,a) 9>2> }_1AT}

—-1/2
wog [{(2y — ln) ® w20 — ln}2 +w21] /

AT{(1, + w22) © (2y — 1)} ]

M5(yl6,0) — 0 [ — $vec(AT diag(wa2)A)

Parameter Outputs: nﬁ(m 0,a) — 0

Algorithm 6: The inputs, updates and outputs of the Support Vector Machine pseudo-
likelihood fragments.

where the model for the mean function f takes the form

K
fx)=0Fo+ Prx+ Z ug zp(z)  with  uglo? = N(0,02) (4.1)
k=1

and {z : 1 <k < K} is a suitable spline basis. The full model used in Wand (2017) is

A (LT )

o2|a, ~ Inverse-x2(1,1/a,), ay, ~ Inverse-x?(1,1/A2),

vl B0l ~ NOXB+ Zuol D), | 4 |

02| a. ~ Inverse-x%(1,1/a.), a. ~ Inverse-x?(1,1/A2)

where
1 = zi(xz1) o0 zr(m)
X=|: : and Z = . ) :
1 z, z1(xp) 0 zr(TR)
The 2 x 1 vector pg, 2 X 2 symmetric positive definite matrix ¥g and the positive

numbers A, and A. are user-specified hyperparameters. Note that

02|a, ~ Inverse-x2(1,1/ay), @y ~ Inverse-x?(1,1/A2?)
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M. W. McLean and M. P. Wand 21

is equivalent to o, having a Half Cauchy prior with scale parameter A,, but this aux-
iliary variable representation has advantages for VMP fitting. The final choice is the
form of the z; and the value of K. In the upcoming example we used canonical cubic
O’Sullivan splines (Wand and Ormerod, 2008) with K = 27.

The joint posterior density function is approximated according to the following prod-
uct restriction

p(B,u,0%, au, 02, acly) = q(B,w)q(o2)q(au) g(o2)q(ac). (4.3)

p(B,ulc?)

p(oZla,) M p(ylp,u,o?,a)

> AN
au() o, ()

Figure 8: Left panel: Factor graph for the ordinary monparametric regression model.
The Gaussian likelihood fragment is shown in red. Right panel: Factor graph for the
quantile nonparametric regression model. The Asymmetric Laplace likelihood fragments
are shown in green.

VMP fitting of (4.2) can be accomplished by using the natural parameter updates
for each of the fragments described in Section 4.1 of Wand (2017). The relevant factor
graph is in the left panel of Figure 8 with the Gaussian likelihood fragment shown in
red. We applied the VMP fitting procedure to data on 4,847 Zambian children from a
1992 demographic and health survey. These data are part of the data frame Zambia in
the R package INLA (Rue et al., 2016). The predictor and response data are

x; = age of the i¢th child in months
and y; = undernutrition score of the ith child, 1 <1 <4,847.

(4.4)
All data were standardized and the hyperparameters we set at pg = 0, Xg = 10'°T and
A, = A. = 10°. The fits were back-transformed to the original units for plotting. The
estimated nonparametric regression function and corresponding pointwise 95% credible
set are shown in the left panel of Figure 9. The estimate shows mean undernutrition
falling during the infancy period of the children before levelling off at about 2 years of
age.

Now suppose that 1007% quantile nonparametric regression for the same data is of
interest. This involves replacement of

y|ﬂ,u,a? NN(X,@—&—Zu,a?I)
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22 Variational Message Passing for Elaborate Regression

—— 95% quantile

90% quantile

75% quantile
< 4 . < o . — 50% quantile
—— 25% quantile
— 10% quantile
—— 5% quantile

undernutrition score
undernutrition score

age in months age in months

Figure 9: Left panel: VMP nonparametric regression fit to the variables on Zambian
children given by (4.4). The curve is the approzimate posterior mean and the shaded
region corresponds to pointwise approximate 95% credible sets. The estimates are based
on VMP applied to model (4.2) according to product restriction (4.3). The relevant factor
graph is shown in the left panel of Figure 8. Right panel: VMP quantile nonparametric
regression fits to the same data. The curves and shaded regions have the same definitions
as for the left panel.

by

G-n0 o

a;7(1—=7)" a;7(1 —7)

yi| B,u, 0%, a N ((X,@ + Zu); + ) Loa; Inverse-x2(2, 1)

in model (4.2). In terms of factor graphs it involves replacement of the Gaussian likeli-
hood fragment by the Asymmetric Laplace likelihood fragments of Figure 4. The new
fragments are shown in green in the right panel of Figure 8. The VMP updates corre-
sponding to messages away from the likelihood are identical for both models. Algorithm
3 is used for the quantile nonparametric regression fitting and inference.

As a check, the same models were fit to the data using Markov chain Monte Carlo.
The nonparametric regression and quantile regression curves are very close to their
VMP counterparts. However, the 95% credible set bands are narrower for VMP. This is
a consequence of the loss of inferential accuracy incurred by variational approximations
involving auxiliary variables (see e.g. Wand et al., 2011).

4.2 Poisson to Negative Binomial Additive Model Analysis

Our second illustration involves additive model analysis when the response variable is a
count. First we carried out a Poisson additive model analysis similar to those described
in Section 12.3 of Ruppert et al. (2003). The data involve daily ragweed pollen counts
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in Kalamazoo, U.S.A.; during the 1991-1994 ragweed seasons. The model is of the form

yi '™ Poisson{ exp (8o + Br 1 + B2 wai + B3 wsi + fo,(141))}, 1<i<n  (4.5)

where n = 334 is the total number of days when ragweed pollen was in season during
1991-1994. The variables appearing in (4.5) are ragweed pollen count on the ith day
(i), temperature residual on the ith day (x1;), indicator of significant rain on the ith
day (z2;), wind speed in knots on the ith day (z3;), day number of ragweed pollen season
for the current year on which y; was recorded (z4;) and a categorical variable for the
year in which y; was recorded (one of 1991, 1992, 1993 or 1994) (z;). Here temperature
residuals are the residuals from fitting penalized splines, each having 5 effective degrees
of freedom, to temperature (in degrees Fahrenheit) versus day number for each annual
ragweed pollen season. Note that (4.5) is not an additive model in the usual sense
since f,,(x4;) represents an interaction between year and day in ragweed pollen season.
Mixed model-based penalized splines analogous to (4.1) are used for modelling the f,
z € {1992,1992,1993,1994}. Let 02,, 1 < ¢ < 4, denote the variance parameters used
to penalize each of the four penalized splines. The full model is

y| B,u ~ Poisson{ exp(XB + Zu)},

{'8}02 025,024,002, ~ N He = ’ ]
u ul? Pu2r Fuds Fud 0 "| 0 blockdiag(c?,I) ’ (4.6)
1<e<4
Ufw\aug ~ Inverse-x?(1,1/aue), aue ~ Inverse-x?(1, 1/A124£)» 1<e<4.
Here
1 xyy - g1 I(21=1992)  2401(21=1992) .- I(21=1994) x411(2;=1994)
X — - ) ) . . .

1 @1 X4 1(2,=1992) 245 1(2,=1992) .- I(2,=1994) x4,1(2,=1994)

and Z = [Z1991 21992 Z1993 Z1994] where Z1991 is an n x K matrix with (l,k) entry
equal to I(z; = 1991)z(24;) and Z1gga, ..., Z1994 are defined analogously. The 3 and
u vectors contain the coefficients to match the columns of X and Z respectively.

Despite the simplicity of Poisson response regression models, it is often the case that
the Poisson likelihood is inadequate for modeling count response data that typically
arises in practice. The crux of this inadequacy is the Poisson distribution restriction
of the variance equalling the mean. It is common for the variability of count responses
to be much higher than that imposed by the Poisson likelihood. If such overdispersion
is ignored then standard errors are underestimated and valid statistical inference is
compromised. The Negative Binomial family is an extension of the Poisson family that
allows for the variance to exceed the mean. The move from this Poisson additive model
to a Negative Binomial additive model involves replacement of

y| B,u ~ Poisson{ exp(XB + Zu)}
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24 Variational Message Passing for Elaborate Regression

by
ind.

yil a; % Poisson(a;), a;| B,u,k '~ Gammalk, k exp{—(X B+ Zu);}],

which corresponds to the likelihood specification
yi| B, u, k'~ Negative-Binomial[exp{—(X 3 + Zu);}, x].

Figure 10 shows the old and the new factor graphs according to this replacement.
Almost all of the fragments in these factor graphs are covered by Wand (2017) and Al-
gorithm 1. The exception is the fragment containing the factor p(x), which corresponds
to placing a prior distribution on k. In the ragweed data analysis we used the prior
p(k) = 0.0l exp(—0.01k), k > 0, which implies that the message sent from p(x) to « is

_ klog(k) —log{T'(x)} g 0
Mp(r) — x(K) = exp —0.01

K
This prior and message simply correspond to the Exponential distribution with rate
parameter 0.01. We use the Moon Rock-type representation since it is conjugate with
messages passed from p(a|B3,u, k) to k.

plagt) Plauz) p(aus) p(aus) Plaw) p(av2) plaus) P(aus)

Figure 10: Left panel: Factor graph for the Poisson additive regression model. The Pois-
son likelihood fragment is shown in red. Right panel: Factor graph for the Negative Bi-
nomial additive model. The Negative Binomial likelihood fragments are shown in green.

Figure 11 provides some visual summaries of the model fits. The first row shows
posterior density functions for the coefficients of the predictors that enter the models
linearly, and the Negative Binomial shape parameter. The posterior density functions
for the Poisson model are considerably narrower than those for the Negative Binomial
model, which is indicative of overdispersion being ignored in the former model. In the
same vein, the posterior density function of x has most of its support between 1.4 and
2.2. Such low k values indicate superiority of the Negative Binomial model since the
Poisson model corresponds to the k — oo limiting case.

The lower four panels of Figure 11 show the estimates of fig91,..., fig94 for the
Poisson and Negative Binomial models. The solid curves correspond to the posterior
mean for each day in season value, while the dashed curves are pointwise 95% credible
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Figure 11: First three panels: VMP-approxzimate posterior density functions of the co-
efficients of temperature residual, indicator of rain and wind speed for both the Poisson
additive model (4.6) and the Negative Binomial additive model for the ragweed data ex-
ample. Fourth panel: VMP-approximate posterior density function of the k parameter
for the Negative Binomial additive model. Lower four panels: VMP-based estimates of
f1992, - - -, f1994 according to each model. The solid curves are posterior means and the
dashed curves are pointwise 95% credible intervals based on VMP approzimate inference.

sets according to the VMP approximation. The estimates are similar for each model,
but the credible set bands are narrower for the Poisson model, in keeping with their
ignorance of overdispersion.

Computing times for the Poisson and Negative Binomial additive models were also
compared. All computing was performed using version 3.4.1 of the R language (R Core
Team, 2017) on a desktop personal computer with 8 gigabytes of random access memory
and a 3.2 gigahertz processor. Firstly, we determined that 250 iterations were sufficient
for convergence of VMP for each model. The elapsed times were 5.5 seconds for the
Poisson model and 6.9 seconds for the Negative Binomial model.

We also compared the VMP-approximate posterior density functions and additive
model components with those obtained using Markov chain Monte Carlo. Excellent
agreement was observed in almost all cases. An exception concerned the posterior den-
sity function for k, with VMP under-approximating the posterior standard deviation.
This phenomenon was also observed in Luts and Wand (2015).
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26 Variational Message Passing for Elaborate Regression

5 Closing Remarks

As exemplified in Section 4, the algorithms presented in Section 3 concerning fragments
updates for elaborate likelihoods greatly enhances the utility of VMP for semiparamet-
ric regression analyses. In addition to the primitives for VMP-based semiparametric
regression laid down in Wand (2017) we have identified a small set of new primitives,
corresponding to sufficient statistic expectations of the Inverse Square Root Nadarajah,
Moon Rock and Sea Sponge distributions. Once their computation is established in a
suite of computer programmes, a much richer class of models can be handled via the
VMP paradigm.
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S.1 Special Function Definitions and Results

Here we survey special functions that arise in the VMP updates for the elaborate dis-
tributions covered in this article.

S.1.1 Modified Bessel Functions of the Second Kind

The modified Bessel function of the second kind of order p € R is denoted by K.
The argument of K}, can be an arbitrary complex number. We restrict attention here
to positive real arguments, which is sufficient for purposes of this article. Modified
Bessel functions of the second kind have the following integral representation for positive
arguments:

L(lp| + 3)(2z)lel oo cos(t
Ky(z) = ZUP! \/;f( ) / (m2+t2§“§w2dt, r>0

(8.432(5) of Gradshteyn and Ryzhik, 1994). Note that

K_p(z) =Kp(z) forallp,xzeR

(8.486(16) of Gradshteyn and Ryzhik, 1994). The following recursion formula also holds
for all p,x € R:
2Ky (&) = 2K, (@) + 21 () (8.1)

(8.486(10) of Gradshteyn and Ryzhik, 1994).

Computation of K, (z) for p € R and z > 0 is supported by various software packages
such as R (R Core Team, 2017). The R command:

besselK(x,p)

returns K, (z), where x and p denote the respective values of p and .
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2 Variational Message Passing for Elaborate Regression

It is common in variational inference algorithms to have updates involving the ratios
of modified Bessel functions of the second kind such as

Kpi1(x)

K@)’ x> 0. (S.2)

Care needs to be taken with this computation since, for example, the numerator and
denominator may be infinitesimal even though the ratio is not. Wand and Ormerod
(2012) describe remedies to this problem involving continued fraction representation of
ratios such as (S.2). From their Table 1 we have

Kpii(w) _2p+20+41 -3/
K,(z) 2 2_32/4
»(@) 2(x +1) + P 2/_52/4
2(x +2) + P 2T
2r+3)+ ———
@+ -

As explained in Wand and Ormerod (2012), Lentz’s Algorithm (e.g. Press et al., 1992)
can be used to obtain continued fraction approximation. Other ratios can be handled
using (S.1).

The Special Case of p Being Half an Odd Integer

Inp= %(Qk + 1) for some k € Z then K, admits explicit expressions. For example,

Kyjo(x) = 1/% e ™ x>0

combined with (S.1) can be used to obtain explicit forms for other modified Bessel
functions of the second kind having order equal to half of an odd integer such as

r+1 | _,
Ks)s(x) = . Wﬂeﬁ x> 0.

This leads to

S.1.2 Parabolic Cylinder Functions

The parabolic cylinder function of order v € R, is denoted by D,,. The parabolic cylinder
functions of negative order can be expressed in terms of a simple integral as follows:

D,(z) =T(-v)! exp(—x2/4)/0 t™" lexp(—zt — 3t*)dt, v <0, z€R.

Note that only such negative order members of the parabolic cylinder family arise in
this article’s VMP algorithms. A recursion formula for parabolic cylinder functions is

Dyyi(x) =aD,(x) —vD,_1(z). (S.4)
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(9.247(1) of Gradshteyn and Ryzhik, 1994).
The VMP updates in Algorithms 3-5 involve the follow ratio function:

D_V_Q(QS‘)

R.(x) = m,

v>—-1lzeR, (S.5)
which is studied in Neville et al. (2014). Care needs to be taken in the computation of
R.(z) to avoid overflow and underflow. For positive arguments of R, we have the very
simple continued fraction expression

1
R, (z) = 1 >0 (S.6)
v+ 2
v+3
T+

T+
T+

As explained in Neville et al. (2014) and encapsulated in their Algorithm 4 (S.6) com-
bined with Lentz’s Algorithm leads to stable and efficient computation of R, (z) for
x > 0. However, as opposed to the situation in Neville et al. (2014), we also need
R, (z) for z < 0 and we are not aware of a continued fraction representation for the
non-positive argument case. For general x we have

\7+(V+ 1,-%, %)

Ru(x) = (V+ 1)j+(l/,—x’%).

where J T (p,q,7) = fooo 2P exp(qr — r2?) dx is as defined in Wand et al. (2011). As
described in Appendix B of Wand et al. (2011) it advisable to work with the represen-
tation

T (p.q.r) = GM/ exp{plog(x) + gz — ra* — M} dz,
0
where M = sup{z > 0 : plog(z) + qx — raz?},

and logarithms to avoid underflow and overflow. Lastly, note that (S.4) gives rise to
expressions such as

D_, 3(z) 1-2R,(x)
D_, 1(x)  v+2

This affords efficient computation of quantities arising in Algorithms 3, 4 and 5. Relevant
details are in Section S.2.3.

S.1.3 Additional Integral-Defined Functions

For p,q,r > 0 and s < —r define

D(p,q,r,8) = /000 [xlog(x) — log{T'(x)}]? 29 exp (r[m log(z) — log{T'(z)}] + sa:) dx.
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4 Variational Message Passing for Elaborate Regression

Similarly, p,q > 0, r < 0 and |s| < —r we define

o

Ep,q,r,8) = / 2?(1 + 2*)% exp (ra® + sz/1 + 22) dx.

—00

Note that £ is a special case of the G family of functions defined in Wand et al.
(2011). Appendix B of Wand et al. (2011) describes a strategy for stable computation
of functions such as D and €. As explained there, working with logarithms is especially
important to avoid underflow and overflow. The VMP algorithms in this article depend
on ratios of D and £ and logarithm arithmetic is recommended for computing such
ratios.

S.2 Additional Exponential Family Distributions

Section S.1 of the online supplement of Wand (2017) summarizes common exponential
families. In particular, the sufficient statistics and natural parameters for each distri-
bution are given. If x is a univariate random variable having an exponential family
distribution then the sufficient statistic is denoted by T'(x). VMP updates reduce to
expectations of natural statistics and Table S.1 of Wand (2017) lists expressions for
E{T(x)} for each of the exponential family distributions covered there.

In this section we add five more distributions to the list covered in Section S.1 of
Wand (2017). One of them, the Generalized Inverse Gaussian distribution, is relatively
well-known. Another is a distribution introduced and studied in Nadarajah (2008),
which we simply call the Nadarajah distribution. The exponential family of distribu-
tions for which the reciprocal square root of its random variables have a Nadarajah
distribution is an generalization of the Inverse Wishart conjugate family for squared
scale parameters.

Lastly there are two exponential family distributions that arise in elaborate distribu-
tion VMP that, to the best of our knowledge, have not been identified in the statistical
literature or given names. We have taken it upon ourselves to give them names in this
article, since it aids readability as well as future applications and extensions of this
work. Motivated by the fact that the distributions have new shapes, we have chosen the
names Moon Rock distribution and Sea Sponge distribution.

S.2.1 Generalized Inverse Gaussian

For any fixed p € R, the random variable = has a Generalized Inverse Gaussian distri-
bution with parameters «, § > 0, written  ~ GIG(«, 3;p), if the density function of z
is

(a/B)P/2 P!

TR

exp{—%(ozx—kﬁ/a:)}, x>0,
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where K, is the modified Bessel function of the second kind as described in Section
S.1.1 of the online supplement. The sufficient statistic and base measure are

T(z) = { 1?:5 ] and  h(z) = La? ' I(z > 0).
The natural parameter vector and its inverse mapping are
SRR HE
and the log-partition function is
A(n) = 5 log(m/n2) — log I, (2(m12)"/?).

The expected value of the sufficient statistic is

(m2/m)Y? Kpy1(2(mn2)'/?)

Ky (2(mm2)t/?)
E{T(z)} =
(m/m2)"? Kpia (2(mm2)' %) | p
Kp(2(771772)1/2) 2

It follows from (S.3) that for the special case of p = 3 we have

{m/(2n2)}'/% = 1/(2n2)
E{T(x)} = : (5.1)
(m/m2)/?

S.2.2 Nadarajah Distribution

The random variable  has the distribution introduced in Nadarajah (2008) with pa-
rameters a, 3 > 0 and v € R, written x ~ Nadarajah(c, 8,7), if the density function of
T is

p(z) = (28)*/2/lexp{y*/(88)}T () D_o(v//28 Yexp(—fBa® —yx), x>0.
The sufficient statistic and base measure are

log(z)
T(z) = x and h(z) =I(x > 0).

The natural parameter vector and its inverse mapping are

m a—1 «@ m+1
n=\{mn|=| - and Bl=1 —ns
3 -8 g .
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6 Variational Message Passing for Elaborate Regression

and the log-partition function is

A(n) = —3(m + 1) log(—2n3) — § (13 /n3) +1og{T(m + 1)} +log{D_y, _1(—n2/+/—2n3)}

where the last term involves evaluation of the parabolic cylinder function of order —n; —
1. See Section S.1.2 of the online supplement for details on this family of functions. From
(3) of Nadarajah (2008), the expectation of the sufficient statistic is

_ /O“’ log(z) z™ exp(n x 4 13 2°) da
(m +1) Doy —2(=m2/v/—2n3)
E{T ()} = V=213 D_p, —1(—n2/v/—21n3)
(m +1)(m +2) Dy, —3(—n2/vV—2m3)
L (—2n3) D_py,—1(=n2/v/—2n3) _

The integral in the first entry of E{T'(x)} is expressible in terms of established special
functions. However, this expectation is not needed for any of this article’s algorithms.

S.2.3 Inverse Square Root Nadarajah Distribution

A random variable x has an Inverse Square Root Nadarajah distribution with param-
eters o, > 0 and v € R, written z ~ Inverse-Square-Root-Nadarajah(«, 3,7), if and
only if 1//x ~ Nadarajah(«, §,v). Here we are using the same naming convention as
used for the Log Normal distribution, where the transformation is the one applied to
the new random variable to get to the established distribution.

The corresponding density function is

p(z) = (28)*/%/12exp{y*/(88)}T () Do (v/\/28)) 2~/ exp(—B/z—v/V/T), x> 0.
The sufficient statistic and base measure are

log()
T(z) = 1{/\/5 and h(z)=I(zx >0).

The natural parameter vector and its inverse mapping are

m ~(a/2) — 1 a ~2m 1)
n=1|mn|= — and | = —13
3 —p Y —1)

and the log-partition function is

A(n) = —5(m + 1) log(—2n3) — log(2) — §(n3/n3)
+log{l'(m + 1)} +log{D_p, ~1(=m2//—2n3)}
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The expectation of the sufficient statistic is

W " log(z) £ exp(n/v/E + 1s/7) d
—2(m + 1) Doy, +1(=m2/v/—2n3)
E{T()} = V=213 D2m+2+(—772/\/ —2773)3 ’ (8.2)

—(m + 1)(2m + 1) Day, (=12/v/—2n3)
L 13 Dan, y2(=12/v/—2n3) §

Convenient notation based on (S.2), which we use in Algorithms 3-5 | is

—2(m + 1) Doy, 11(—n2/v/—2n3)
V=213 Doy, y2(—n2/v/—213)

—(m +1)2m + 1) Doy, (—12/v—2n3)
N3 Doy, +2(=12/v/=213)

See Section S.1.2 of the online supplement for advice concerning stable and efficient
computation of (ET)5"N(n) and (ET)5™N(n).

(ET)3™(n) =
(S.3)
and (ET)¥™N(n) =

S.2.4 Moon Rock Distribution

The random variable  has a Moon Rock distribution with parameters @ > 0 and 3 > «,
written & ~ Moon-Rock(a, (), if the density function of x is

s -1
p(z) = [/ {t'/T(t)}* exp(—3t) dt] {z%/T(x)}* exp(—Bx), z>0.
0
The sufficient statistic and base measure are

T(z) = { v log(x) —xlog{l“(a:)} } and h(xz)=1I(z > 0).

The natural parameter vector and its inverse mapping are

[2)-[5] = [3]-])
T2 -3 g —n2
and the log-partition function is

A(n) =log {/Ooo{tt/F(t)}’“ exp(nz t) dt} . (S.4)
The expectation of the sufficient statistic is
/0 " [ log(x) — log{T(x)}] {2 /T (@)} em* da

E{T(x)} = exp{—A(n)) ~
/O z {2 /T(2)}" exp(nz ) de
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8 Variational Message Passing for Elaborate Regression

It seems that the integrals appearing in this section are not expressible in terms
of established special functions. The function D defined in (S.1.3) is tailor-made to
summarize such integrals succinctly. Expressions (S.4) and (S.5) can be re-written:

D(1,0,m1,
A(n) =1og {D(0,0,m1,72)} and E{T“’}:[pimz Z;] / D(0,0, 71, 72)-

Working with logarithms is strongly recommended to avoid underflow and overflow.

A convenient notation based on (S.5), which we use in Algorithms 1 and 2, is

(ET)giR(n) - D(Ov ]-a m, 772)/1)(0» 07 i, 772)
= exp [log{D(O, Lim,m)} — log{D(0,0ml,ng)}].

(S.6)

S.2.5 Sea Sponge Distribution

The random variable x has a Sea Sponge distribution with parameters a > 0, 8 > 0
and |y| < B, written  ~ Sea-Sponge(c, 3,7), if the density function of z is

p(z) = {/Z(l +1%)* exp ( — Bt +ytV/1 +t2) dt}1 (1+42%)~
XeXp(—ﬁwz +7xm).

The sufficient statistic and base measure are
log(1 + 2?)
T(x) = x? and h(z) =1.
a1+ a?

The natural parameter vector and its inverse mapping are

Ul a a mn
n=\mn|=| -8 and B | =1 —n
N3 Y v 73

and the log-partition function is
A(n) = log {/ (14 t*)™ exp (7]2 t2 +n3t\/1 + t2> dt} .
The expectation of the sufficient statistic is

/ log(1 + 22) (1 + 2%)™ exp (772 2 +n3 V1 + 332) dx

— 0o

E{T(z)} = e~ A / 22 (1 + %)™ exp (ng 2?2+ 31+ x2) dx . (8.7)

—00

/ V1 + 22 (1 + 2%)™m exp (ng 2% + 3 x\/1+x2) dx

—0o0
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The log-partition function and expected sufficient statistic can be written as

A(n) = log {€(0,m1,72,m3)}

where the function £ is defined in Section S.1.3 of the online supplement. Notation
analogous to that given for the Inverse Square Root Nadarajah and Moon Rock distri-
butions, based on (S.7), is:

(ET>§S<T'> = 8(25 771a77277]3)/5(07771,7727 773)

(S.8)
= €exp [10g{5(2, 1,72, 773)} - 10g{5<0’ m,n2, 773)}}

and

(ET)%S(’I’]) = 5(1a771 + %77727773)/8(07771)772a773)

(S.9)
= exp [log{E(1,m + 5,m2,m3)} — log{&(0,m1,m2,73)}]

and appears in Algorithm 4.

S.3 Derivations

Each of the fragment updates in Algorithms 1-6 involve repeated application of the
VMP equations (2.4)—(2.6) and the occasional non-conjugate VMP (Knowles and Minka,
2011) modification. We now provide full derivational details.

Throughout these derivations we use ‘const’ to denote terms that do not depend on
the variable of interest.

S.3.1 Negative Binomial Likelihood Fragment Updates

From (2.5) and (2.6), the messages from p(y|a) to each of the a; are

IOg(ai) g Yi .
Mp(y|a) — a; (@) = €xp 0 Tl 1<i<n

Similarly, the messages from p(a|@, k) to each of the a; are, for 1 < i < n,

My(a|0, k) — a;(@i) = eXP {[ IOga(iaz‘) r { gt EZZETQX;)E—(Aa)i}] ]}

where fi4(,) is the mean of the density function formed by normalizing the message
product:
Mp(a|6,r) — K(K’) My - pa)s, H)(’i)

and E,g) denotes expectation with respect to the normalization of

Mp(a)6, k) — 9(0) Mo _ p(al6, k) (0)
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10 Variational Message Passing for Elaborate Regression
Since, from (2.4), My, _ p(a|6, x)(@i) < My(y|a) — o, (ai) we then have

q° (al) X Mp(al 6, k) — a; (al) Ma; — p(al 6, k) (ai)

. T i+ K) 1
o [ log(a;) } Yi T Hq(r) , 1<i<n.
ai —1 = fig(w) Bq(o)lexp{—(A8);}]

This is proportional to a Gamma density function with mean

Yi + :U'q(ﬁ)
L+ pig(s) Eq(e)lexp{—(A0)}]

EQ(ai)(ai) = (S.1)

where F(,,) denotes expectation with respect to ¢*(a;). The corresponding logarithmic
expectations are

Eq(a,)(loga;) = digamma(y; + fiq(x)) — log (1 + tg(x) Eq(0) [exp{—(AH)i}]). (S.2)

For the message passed from p(a|8, ) to k note that

log(r) — log{T()}

n
lo al@, k) =
g p(alf, ) l K ] [ -17A460 + 17 log(a) — a” exp(—A8) ]

~+const.
Hence

rlog(r) —log{I'(r)}

Mpal0, k) — H(K/) = &Xp [ ‘| np(a| 0,k) > Kk (83)

where

n

n 0Kk) -k .
p(al6,r) = r [1£AEq<e><e>+1£Eq<a>{1og<a>}Eq<a><a>TEq<e>{exp<Ae>}

Note that (S.3) is proportional to a Moon Rock density function (defined in Section
S.2.4 of the online supplement) and, under the constraint of conjugacy,

] w1os() 0T ()
My - pa)0, n)(ﬁ) = exp e Ny — p(al 8, k)

is also proportional to a Moon Rock density function and

* log() — log{T()}
q" (k) o< exp . Mp(al6,r) — &

imsart-ba ver. 2014/10/16 file: evmpBA.tex date: February 14, 2018



M. W. McLean and M. P. Wand 11

Hence
Lq(r) = /0 kq* (k) drk — (ET)5™" (np(a| 0,5) < n)

where (ET)5™ is given by (S.6).
The message passed from p(al|6, ) to 0 is
Mip(al, k) — 6(0) = XD [~ tg(r) {1, A0 + Eya) (@) exp(—A6) }]

which is not conjugate with Multivariate Normal messages passed to 6 from other
factors. A non-conjugate variational message passing remedy (Knowles and Minka, 2011)
is to replace 1,49, 1) — 9(0) With

0 T
Myal g, k) — 0(6) = exp [ Vec(@OT) ] Mp(al6,x) — 0

Working with mp(a‘ 0,r) — 0(0) instead of M (g0, 1) — ¢(6) implies that E,g) involves
expectation with respect to a Multivariate Normal random vector and we get

Eyo){exp(~A46)} — w,
where

Wy = exp <w1 - %diagonal |:A{V€C_1 ((np(y‘ 0) — 9)2) }_1AT}>

and 1
w1 = %A{Vecfl ((np(y|0) - 9)2)} (Mp(yl 8) — 0)1-

Arguments similar to those given in Section S.2.3 of Wand (2017) lead to the updates
in Algorithm 1.

S.3.2 t Likelihood Fragment Updates

The log-likelihood in (3.5) is
n

log p(y|6,0°,a) = —Zlog(c?)—1 Z1og(ai)—#(y—AB)Tdiag(a)_l(y—A0)+const.
i=1

Arguments analogous to those used in Section 4.1.5 of Wand (2017) for the Gaussian
likelihood fragment lead to

A" diag{E,(4)(1/a)}y

Moy10, 0% a) — 0~ Ha(1/o?)
p(y|6,0%,a) —1vec(A" diag{E,a)(1/a)} A)
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12 Variational Message Passing for Elaborate Regression

and
—n/2
np(y| 0,02,a) — o2 — Gyup (’l’]p(y‘ 0,02, a) — 9’ ATdiag{Eq(a) (1/0')}Aa
A" diag{Ey(a)(1/a)}y, y" diag{ By (1/0)}11)
where

Hq(1/02) = {(T’p(y|9,0'2,a) — 0'2)1 + 1}/(np(y|9,02,a) — 0'2)2'

Here E,) denotes expectation with respect to ¢*(a) = [[;_; ¢*(a;) and ¢*(a;) is
proportional to

mp(y\@, 0?,a) — a; (a’l) mp(a\u) — a4 (a1>

—3ha() — 3
log(a;
= exXp l: 1/(a):| a 'AT ) TA ATele-T 2
i Hq(1/02)Gvmp np(y‘97027a)<_>91 ee; A, i€ Y, Y;
—5Hq(v)

and pig(,) = fooo v q*(v)dv. Since ¢*(a;) is an Inverse-x? density function the ith entry
of Eyq)(1/a) is

1 3
“abqw) —5 1 .
/,Lq(l/o-2)GV1\/IP (T]p(yl 0,02,a) < 6’ ATeie;FA, ATel-e;ny, yf) - %,uq(y)

Eq(ai)(l/ai) =

Immediately it follows that

(Nq(u) + 1)171

ws = FE o) (l/a) =
° ol )( / ) Mq(u)17b_2ﬂq(1/a2)w4

where w, has ith entry equal to
(w4)i = Gywp (T,p(y| 0,02, a) — 0> ATeie;rAa ATeiezTyv y?) .

Also,

: Hqw) +1
Ey(a{log(a;)} = log (%Mq(u) — Mq(l/gz)(w4)i) — digamma (q(;> .

As a function of v we have
log p(aly) = n{(v/2)log(v/2) — log '(v/2)} — (v/2)17 {log(a) + (1/a)} + const.
Hence

(v/2)log(v/2) — log{T'(v/2)}

V)2 ‘| T’p(a| V) > v (5.4)

My(alv) — (V) = exp [
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M. W. McLean and M. P. Wand 13

where this message’s natural parameter is

T’p(a| V) — v A [ _15 Eq(a){log(a) -+ (l/a)} 1

which involves wy and w; given above. Note that (S.4) is proportional to a factor of 2
rescaling of a Moon Rock density function. Under conjugacy the message m,, _, p(alv) (v)
is in this same exponential family and, hence

(1/2) log(v/2) — log{T'(v/2)} ] !

q"(v) x exp [

V)2 Mp(alv) - v
It follows that p,(,) is updated according to
tawy = 2(BT)5™ (Mp(a)v) < »)-
S.3.3 Asymmetric Laplace Fragment Updates
From (3.7), the logarithm of the likelihood factor is
log p(y|0,02, a)= —j% log(02) + % ilog(ai)
i=1
_% {y — A6 — W}Tdiag(a) {y — A6 — (7%(1_1—):)1:} + const.

Steps analogous to those given in Section 4.1.5 of Wand (2017) for the Gaussian like-
lihood fragment lead to the message from p(y|@, 0?2, a) to @ being Multivariate Normal
with natural parameter update

ATdiag{Eq(a) (a)}ly
—gvec (ATdiag{Eq(a) (a)}A)
AT, ]

np(y|9,a2,a) —0 T(l _T)Mq(l/az) [

(T = $)Hg(1/0) l 0

where fy1/00) = i (1/0%) ¢*(0?) do? for k =1,2.

Noting that, as a function of o2,

log p(y|6,0°,a) = —5log(a?) + (3 — T){y — 46)}71.(1/0)
—1r(1—7)(y — A0)" diag(a)(y — A)(1/0?) + const
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14 Variational Message Passing for Elaborate Regression

the message from p(y|@, 02, a) to o2 is

Myl 6,02 a) — o2 (0%) =
log(2) T —n/2
exp 1/o (3 -m{y~ AEq(G)(O)}T]-n (S.5)
1/0_2 *%T(l — T)tr [Eq(e){(y — Ae)(y _ Ao)T}

X diag{Eq(a)(a)}]
where F,g) denotes expectation with respect to the normalization of
My(y]6,02,a) — 0(0) Mo . p(y|6,0%,a) ()

and Ey(q) is defined similarly for a. Conjugacy with (S.5) requires that the message
from o2 to p(y|0,02, a) is also of the form

log(0?)
2
Mo2 ., py|0,02,a)(07) = XP /o M52 - p(y| 6,02, a)
1/0?

and this is the case provided that messages passed to o2 from other factors outside of
the Asymmetric Laplace likelihood fragments are within or conjugate to the Inverse
Square Root Nadarajah family. The optimal ¢-density for o2 is such that

log(c®)
q*(0?) o exp 1/o Mo(y| 0,02, a) = o2
1/0?

and the fi4(1/0) and pg(1/02) updates follow from (S.2).
The messages from p(y|@,02%,a) to a;, 1 <i < n, are

Mop(y(6,02,a) — a; (@) =

12 a; r _%T(l - T)Mq(l/JZ)Eq(G){(y - Aa)?}
a;"” exp . ) I(a; > 0)
1/a’i 2 8r(1-1)
whilst those from p(a) to a;, 1 <1i <n, are
Mip(a) — o, (ai) = a7 ® exp{~1/(2a:)} (a; > 0).
This leads to the ¢*(a;) being Inverse-Gaussian density functions and
Eyay(a) = {8721 — 7)2pg(1 jomywr} /? = ws
where
_ T T
wr = [ Gymp (np(y|97027a) LA eie;fFA, A eiefy,y?) :|l§l§n .

The updates in Algorithm 3 quickly follow.
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M. W. McLean and M. P. Wand 15

S.3.4 Skew Normal Fragment Updates

It follows from (3.9) that the logarithm of the likelihood factor is

2

14 A2 Aolal
2 2 2
log p(y|@,0°,\,a) = —%5 log(c”)+% log(1+A7) — 552 - e +const,
where, here and elsewhere, ||v|| = VvTv for any vector v. Using steps similar to those

given in Section 4.1.5 of Wand (2017) for the Gaussian likelihood fragment, the message
from p(y|@, 02, \,a) to @ is proportional to a Multivariate Normal density function with
natural parameter update

1 ATy
Moy 6,02, 7a) — 0 < {1+ He(x2) Hig1/02) ~Lvec(AT A)
ATEq(a)\a|
“Hg(avaTr1)He(1/0) 0
where 14150y = [ (1/0%) ¢*(02) do? for k = 1,2,

/Lq()\z)z-/ M g*(N\)dX\ and I g(A/3ZTT) E/_ AV A2+ 1g*(N)dA.

The message from p(y|@,0%, \,a) to o2 is

2
My(y|6,0%, 1, a) — 02(07) =

1Og(02) T —n/2
i (S.6)
exp 1/o HaowT (Y — A Eq0)(0)} Eyalal
1/0* =5 (1+ 1g0v2)) Ego) {Ily — ABI*}

which is in the Inverse Square Root Nadarajah Family (Section S.2.3 of the online
supplement). The treatment of My1 6,02, A, a) — o (0?) is analogous to that for the

messages from the likelihood factor to o2 for the Asymmetric Laplace fragments.

The message from p(y|@,0%,\,a) to \ is

Mop(y)0,02, 1, a) — A(N) =
T

log(1 + A?) n/2
2 1 2 2 (S.7)
exp A _§[Mq(1/02)Eq(0){||y_AHH }"'Eq(a)HaH ]
T
AV 42 ta(/o){y — AEqy0)(0)} Eyalal

which is proportional to density functions within the Sea Sponge exponential family
defined in Section S.2.5 of the online supplement. Under the conjugacy restriction ¢*(\)
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16 Variational Message Passing for Elaborate Regression

is a Sea Sponge density function with natural parameter Mo(y| 6,02, 1, a) — A Using
definitions (S.8) and (S.9) we then get

Ha(x2) < (BT)5 (M) 0,07, 3, 0) < )

and
SS

Haowane) (BT (My(y1 0,02, 3, a)  A)-

The messages from p(y|@,02,\,a) to the a;, 1 < i < n, are

T
i ] [ Ha(1/0) aonyTiae) (Y — A Eq(e)(0) }i 1

Mop(y|6,0%, 7, a) — a, (41) = €XP [ >

a;

—5Hq(»2)

whilst those from p(a) to a; are

Mp(a) — a; (a;) = exp(—% a?)

Hence

T
|ai ] l Ha(1/0) ooyt (Y — A Eq(e)(0) i ]

q*(a;) o< exp [ )
—3{mere) +1}

2
a;

and standard manipulations involving the Standard Normal distribution density and
cumulative distribution functions lead to

n+ 15 w12 © {wiz + ¢ (wi2)}]
tq(x2) +1

Eya)lal = w3 and Eq(a)||a||2 =

where w1 and w13 are defined by the relevant updates in Algorithm 4.

We are now in a position to simplify the messages (S.6) and (S.7). The natural
parameter update for the first of these messages is

—n/2

Mp(y|6,02,0,a) — 02 T | Hq(Av/ITx%) wipwis
(1 + Mq()\Z))Wll

where
wi1 = Gywe (’r’p(m 0,02, )\, a) — 9’ ATAa ATy7 yTy) .
That for the second is
n/2
n+ 17 [wia © {wiz + ('(wi2)}]

2{pq(x2) + 1}
fq(1/0) W1oW13

Mp(y|0,0%,7,a) = X Hq(1/02)W11 —
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M. W. McLean and M. P. Wand 17

S.3.5 Finite Normal Mixture Fragment Updates

From (3.12), the logarithm of the likelihood factor is

2 a)= 1 ((y—Af); 2
log p(yf. . a) =~ log(s +ZZ%*€[‘ e

=1 k=1
~+const.

As with each of the previous derivations in this section, the message from the likelihood
factor to @ is proportional to a Multivariate Normal density function and takes the form

ATdiag{Eq(a) (#)(1x/5%)}y ]

Toy]0.0%a) 0 Hat1/o?) [—;Vec(ATdiag{Eq<a><w><1K/s2>}A>

“Hq(1/0)

AT Eya) (&) (m/s?) ]
0

where fy1 /0 = 5 (1/0%) ¢*(0?) do? for k =1,2 and
o =
a

The messages from p(y|0,02,a) to the a;, 1 <i < n, are

Mop(y|6,02,a) — a; (@) = €XP {aiT ( Sl

 Ha/e) By {(y — A8)i}* 1k — 2014(1/0){y — A Ey(0)(0)}im — m2> }
252

whereas the messages from p(a) to the a; are

Mpa) - a; (a;) = exp{aZT log(w)}.

For each i, both messages passed to a; from its neighboring factors are proportional
to Multinomial probability mass functions. Hence ¢*(a;) is a Multinomial probability
mass function and standard calculations lead to Eyq) (&) = Q15 where §215 is defined
by the updates given in Algorithm 5.

The message from p(y|0, 0%, a) to o? is

M) 0,0%,a) — 02(07) =
10g(02) -n/2
exp /o ly-A EQ(G)(O)}TEq(a) (&) (m/s?)
Yo? ] 3 By | (v — 46) " ding{a/(1/57) (v — A40)|
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18 Variational Message Passing for Elaborate Regression

This means that the message passed from Myp(y| 0,02, a) — o (02) to o? is proportional

to an Inverse Square Root Nadarajah density function. Noting that
{y = AEy0)(0)} Bya) (@) (m/s”) = wi; Qs (m/s?)

where wis is defined by the update in Algorithm 5 and

1 Byo.a) | (u — A) " diag{a(1/5%)} (u — 46)|

= 1B [OTATdiag{,duK /52)} A0 — 207 AT diag{f (15 /%) }y

+y” diag{# (1xc/s) }y|

= —% Eq6) [BTATdiag(wlg)AB — 20TATdiag(w19)y + deiag(wlg)y}

= Gvwr (np(y| 0,02 a) — 0 A" diag(wig) A, AT diag(wi9)y, deiag(w19)y>7

2 in

with wig = Eyq)(@)(1x/s?) = Qis(1x/s?), the update for Ty(
Algorithm 5 follows.

The arguments used to obtain the fi4(;/,#) updates are similar to those given in
Section S.3.3 for the Asymmetric Laplace fragment. Algorithm 5 ensues.
S.3.6 Support Vector Machine Fragment Updates
According to (2.5) and (2.6), the messages from p(a) to each of the a; are
My(a) — a; (@) = Plai) = I(a; >0), 1<i<n. (S.8)
Similarly, the messages from p(y|@, a) to each of the a; are, for 1 <14 < n,

Mis(y|6,a) — a; (@)

T 1
. a»_1/2 < a; ) (89)
R [ 1/a; } —35 Eq0)[{(2y: — 1)(A0); — 1}7] ]}

where Fg) denotes expectation with respect to the normalized

Mis(y|6,a) — 0(0) Mg — 5(y|6,a)(0)- (S.10)

For the message from p(y|60,a) to @ we first note that, as a function of 0,

- 1 ai—2i—1 A0i2
Z[{Jr (2y;: — 1)(A6),}

a;

N

log p(y|6,a) = — ] + const

i=1

-+ const

0 1" [AT{(1,+1./a)® (2y — 1,)}
vec(00™) —1vec{ATdiag (1,/a) A}
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M. W. McLean and M. P. Wand 19
where ‘const’ denotes terms not depending on 6. Therefore

T
0
Mis(y|6,a) — 6(0) = exp [VGC(GQT)] Mi(y/6,a) — 6

where
AT[{Ly + Eya)(1n/a)} © (2y — 1,)]
Mi(y|6,a) — 0 . - (S.11)
—svec[A" diag{Ey)(1,/a)} A]

and
Eq(a)(ln/a) = [Eq(m)(l/al)a ) Eq(an)(l/an)]T

with Ey(,,) denoting expectation with respect to the normalized
q"(ai) X My 0, a) — a; (@) Mypa) — o (@), 1<i<n. (5.12)

On combining (S.8), (S.9) and (S.12) it is apparent that Eg,) denotes expectation
with respect to a Generalized Inverse Gaussian distribution with p = % and natural
parameter vector

1
2
—3Eq0) [{(2ys — 1)(A0); — 1}?] ] .
Then, from (S.1) in Section S.2.1
—1/2

Eq(any(1/a;) = (Eqe) {2y — 1)(A0); — 1}7])

- ([(2% — 1) Ey0){(A0),} — 1] + Varq(g){(AH)i})il/z

= [{25 ~ D(Apy) ~ 1)+ (AT, 047

where Hq(o) and X9y are the common parameters of the Multivariate Normal that
arises from normalization of (S.10). Now set the updates

Wop Auq(g), Wwo1 diagonal(A Eq(g)AT),
(S.13)
and  woy «— [{(2y — 1) @ wag — 1,}% 4+ way] 7172,

Then the updates in Algorithm 6 follow from updates (S.11) and (S.13) with g,y and
3,0 replaced by their natural parameter counterparts according to (S.4) in the online
supplement of Wand (2017).
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